Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-55120-1
Download full text from publisher
References listed on IDEAS
- Meihuan Liu & Jing Zhang & Hui Su & Yaling Jiang & Wanlin Zhou & Chenyu Yang & Shuowen Bo & Jun Pan & Qinghua Liu, 2024. "In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Ziqian Xue & Kang Liu & Qinglin Liu & Yinle Li & Manrong Li & Cheng-Yong Su & Naoki Ogiwara & Hirokazu Kobayashi & Hiroshi Kitagawa & Min Liu & Guangqin Li, 2019. "Missing-linker metal-organic frameworks for oxygen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
- Jingjing Duan & Sheng Chen & Chuan Zhao, 2017. "Ultrathin metal-organic framework array for efficient electrocatalytic water splitting," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
- Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
- Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yunzhou Wen & Cheng Liu & Rui Huang & Hui Zhang & Xiaobao Li & F. Pelayo García de Arquer & Zhi Liu & Youyong Li & Bo Zhang, 2022. "Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen Wang & Chaoyuan Deng & Panlong Zhai & Xiaoran Shi & Wei Liu & Dingfeng Jin & Bing Shang & Junfeng Gao & Licheng Sun & Jungang Hou, 2025. "Tracking the correlation between spintronic structure and oxygen evolution reaction mechanism of cobalt-ruthenium-based electrocatalyst," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Yanfeng Shi & Lupeng Wang & Miao Liu & Zuozheng Xu & Peilin Huang & Lizhe Liu & Yuanhong Xu, 2025. "Electron–phonon coupling and coherent energy superposition induce spin-sensitive orbital degeneracy for enhanced acidic water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
- Shuang Wang & Wenhe Xie & Ping Wu & Geyu Lin & Yan Cui & Jiawei Tao & Gaofeng Zeng & Yonghui Deng & Huibin Qiu, 2022. "Soft nanobrush-directed multifunctional MOF nanoarrays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Raj Pandya & Florian Dorchies & Davide Romanin & Jean-François Lemineur & Frédéric Kanoufi & Sylvain Gigan & Alex W. Chin & Hilton B. Aguiar & Alexis Grimaud, 2024. "Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Zhenhua Li & Xiaofan Li & Hua Zhou & Yan Xu & Si-Min Xu & Yue Ren & Yifan Yan & Jiangrong Yang & Kaiyue Ji & Li Li & Ming Xu & Mingfei Shao & Xianggui Kong & Xiaoming Sun & Haohong Duan, 2022. "Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Xu Luo & Hongyu Zhao & Xin Tan & Sheng Lin & Kesong Yu & Xueqin Mu & Zhenhua Tao & Pengxia Ji & Shichun Mu, 2024. "Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Xuelei Pan & Mengyu Yan & Qian Liu & Xunbiao Zhou & Xiaobin Liao & Congli Sun & Jiexin Zhu & Callum McAleese & Pierre Couture & Matthew K. Sharpe & Richard Smith & Nianhua Peng & Jonathan England & Sh, 2024. "Electric-field-assisted proton coupling enhanced oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Sheng Zhao & Sung-Fu Hung & Liming Deng & Wen-Jing Zeng & Tian Xiao & Shaoxiong Li & Chun-Han Kuo & Han-Yi Chen & Feng Hu & Shengjie Peng, 2024. "Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
- Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Inkyu Lee & Abhijith Surendran & Samantha Fleury & Ian Gimino & Alexander Curtiss & Cody Fell & Daniel J. Shiwarski & Omar Refy & Blaine Rothrock & Seonghan Jo & Tim Schwartzkopff & Abijeet Singh Meht, 2023. "Electrocatalytic on-site oxygenation for transplanted cell-based-therapies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55120-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.