IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55120-1.html
   My bibliography  Save this article

Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation

Author

Listed:
  • Geng Zhang

    (Northwestern Polytechnical University)

  • Wei Guo

    (Northwestern Polytechnical University)

  • Hong Zheng

    (Northwestern Polytechnical University)

  • Xiang Li

    (Northwestern Polytechnical University)

  • Jinxin Wang

    (Northwestern Polytechnical University)

  • Qiuyu Zhang

    (Northwestern Polytechnical University)

Abstract

Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution. In situ experiments and theory simulations indicate that nickel centers with neighboring coordinated water molecules follow an intramolecular oxygen coupling mechanism with a low thermodynamic energy barrier. With more coordinated water introduced, an optimized intramolecular oxygen coupling process may appear for favoring the reaction kinetics. As such, a low overpotential of 248 mV at 10 mA cm–2 and long-term stability of 200 h are achieved. This study underscores the potential of crafting coordinated water molecules for efficient electrocatalysis applications.

Suggested Citation

  • Geng Zhang & Wei Guo & Hong Zheng & Xiang Li & Jinxin Wang & Qiuyu Zhang, 2024. "Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55120-1
    DOI: 10.1038/s41467-024-55120-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55120-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55120-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55120-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.