IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42756-8.html
   My bibliography  Save this article

Developing a class of dual atom materials for multifunctional catalytic reactions

Author

Listed:
  • Xingkun Wang

    (Ocean University of China
    Chinese Academy of Sciences
    Shandong Energy Institute
    Qingdao New Energy Shandong Laboratory)

  • Liangliang Xu

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Cheng Li

    (Eastern Institute of Technology
    Southern University of Science and Technology
    University of Birmingham)

  • Canhui Zhang

    (Ocean University of China)

  • Hanxu Yao

    (Chinese Academy of Sciences
    Shandong Energy Institute
    Qingdao New Energy Shandong Laboratory)

  • Ren Xu

    (Ocean University of China)

  • Peixin Cui

    (Chinese Academy of Sciences)

  • Xusheng Zheng

    (University of Science and Technology of China)

  • Meng Gu

    (Eastern Institute of Technology
    Southern University of Science and Technology)

  • Jinwoo Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Heqing Jiang

    (Chinese Academy of Sciences
    Shandong Energy Institute
    Qingdao New Energy Shandong Laboratory)

  • Minghua Huang

    (Ocean University of China)

Abstract

Dual atom catalysts, bridging single atom and metal/alloy nanoparticle catalysts, offer more opportunities to enhance the kinetics and multifunctional performance of oxygen reduction/evolution and hydrogen evolution reactions. However, the rational design of efficient multifunctional dual atom catalysts remains a blind area and is challenging. In this study, we achieved controllable regulation from Co nanoparticles to CoN4 single atoms to Co2N5 dual atoms using an atomization and sintering strategy via an N-stripping and thermal-migrating process. More importantly, this strategy could be extended to the fabrication of 22 distinct dual atom catalysts. In particular, the Co2N5 dual atom with tailored spin states could achieve ideally balanced adsorption/desorption of intermediates, thus realizing superior multifunctional activity. In addition, it endows Zn-air batteries with long-term stability for 800 h, allows water splitting to continuously operate for 1000 h, and can enable solar-powered water splitting systems with uninterrupted large-scale hydrogen production throughout day and night. This universal and scalable strategy provides opportunities for the controlled design of efficient multifunctional dual atom catalysts in energy conversion technologies.

Suggested Citation

  • Xingkun Wang & Liangliang Xu & Cheng Li & Canhui Zhang & Hanxu Yao & Ren Xu & Peixin Cui & Xusheng Zheng & Meng Gu & Jinwoo Lee & Heqing Jiang & Minghua Huang, 2023. "Developing a class of dual atom materials for multifunctional catalytic reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42756-8
    DOI: 10.1038/s41467-023-42756-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42756-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42756-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gege Yang & Jiawei Zhu & Pengfei Yuan & Yongfeng Hu & Gan Qu & Bang-An Lu & Xiaoyi Xue & Hengbo Yin & Wenzheng Cheng & Junqi Cheng & Wenjing Xu & Jin Li & Jinsong Hu & Shichun Mu & Jia-Nan Zhang, 2021. "Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Hongqiang Jin & Peipei Li & Peixin Cui & Jinan Shi & Wu Zhou & Xiaohu Yu & Weiguo Song & Changyan Cao, 2022. "Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Mingchuan Luo & Zhonglong Zhao & Yelong Zhang & Yingjun Sun & Yi Xing & Fan Lv & Yong Yang & Xu Zhang & Sooyeon Hwang & Yingnan Qin & Jing-Yuan Ma & Fei Lin & Dong Su & Gang Lu & Shaojun Guo, 2019. "PdMo bimetallene for oxygen reduction catalysis," Nature, Nature, vol. 574(7776), pages 81-85, October.
    4. Lu Zhao & Yun Zhang & Lin-Bo Huang & Xiao-Zhi Liu & Qing-Hua Zhang & Chao He & Ze-Yuan Wu & Lin-Juan Zhang & Jinpeng Wu & Wanli Yang & Lin Gu & Jin-Song Hu & Li-Jun Wan, 2019. "Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Shenlong Zhao & Chunhui Tan & Chun-Ting He & Pengfei An & Feng Xie & Shuai Jiang & Yanfei Zhu & Kuang-Hsu Wu & Binwei Zhang & Haijing Li & Jing Zhang & Yuan Chen & Shaoqin Liu & Juncai Dong & Zhiyong , 2020. "Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction," Nature Energy, Nature, vol. 5(11), pages 881-890, November.
    6. Zhaoyan Luo & Hao Zhang & Yuqi Yang & Xian Wang & Yang Li & Zhao Jin & Zheng Jiang & Changpeng Liu & Wei Xing & Junjie Ge, 2020. "Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Zhe Jiang & Xuerui Liu & Xiao-Zhi Liu & Shuang Huang & Ying Liu & Ze-Cheng Yao & Yun Zhang & Qing-Hua Zhang & Lin Gu & Li-Rong Zheng & Li Li & Jianan Zhang & Youjun Fan & Tang Tang & Zhongbin Zhuang &, 2023. "Interfacial assembly of binary atomic metal-Nx sites for high-performance energy devices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Qichen Wang & Qingguo Feng & Yongpeng Lei & Shuaihao Tang & Liang Xu & Yu Xiong & Guozhao Fang & Yuchao Wang & Peiyao Yang & Jingjing Liu & Wei Liu & Xiang Xiong, 2022. "Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xiaohui He & Hao Zhang & Xingcong Zhang & Ying Zhang & Qian He & Hongyu Chen & Yujie Cheng & Mi Peng & Xuetao Qin & Hongbing Ji & Ding Ma, 2022. "Building up libraries and production line for single atom catalysts with precursor-atomization strategy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Jia Zhao & Ricardo Urrego-Ortiz & Nan Liao & Federico Calle-Vallejo & Jingshan Luo, 2024. "Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Zilong Wu & Xiangyu Liu & Haijing Li & Zhiyi Sun & Maosheng Cao & Zezhou Li & Chaohe Fang & Jihan Zhou & Chuanbao Cao & Juncai Dong & Shenlong Zhao & Zhuo Chen, 2023. "A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Hengjia Wang & Ying Qin & Yu Wu & Yiwei Qiu & Ling Ling & Qie Fang & Canglong Wang & Liuyong Hu & Wenling Gu & Chengzhou Zhu, 2024. "Pd hydride metallene aerogels with lattice hydrogen participation for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Yifeng Hou & Fengyan Wang & Chichu Qin & Shining Wu & Mengyang Cao & Pengkun Yang & Lu Huang & Yingpeng Wu, 2022. "A self-healing electrocatalytic system via electrohydrodynamics induced evolution in liquid metal," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Yinghao Li & Chun-Kuo Peng & Yuntong Sun & L. D. Nicole Sui & Yu-Chung Chang & San-Yuan Chen & Yingtang Zhou & Yan-Gu Lin & Jong-Min Lee, 2024. "Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Xiang Liu & Yu-Quan Zhu & Jing Li & Ye Wang & Qiujin Shi & An-Zhen Li & Kaiyue Ji & Xi Wang & Xikang Zhao & Jinyu Zheng & Haohong Duan, 2024. "Electrosynthesis of adipic acid with high faradaic efficiency within a wide potential window," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Tingting Lian & Li Xu & Diana Piankova & Jin-Lin Yang & Nadezda V. Tarakina & Yang Wang & Markus Antonietti, 2024. "Metal-organic framework derived crystalline nanocarbon for Fenton-like reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42756-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.