IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53354-7.html
   My bibliography  Save this article

Spatiotemporal cerebral blood flow dynamics underlies emergence of the limbic-sensorimotor-association cortical gradient in human infancy

Author

Listed:
  • Minhui Ouyang

    (Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • John A. Detre

    (University of Pennsylvania
    University of Pennsylvania)

  • Jessica L. Hyland

    (Children’s Hospital of Philadelphia)

  • Kay L. Sindabizera

    (Children’s Hospital of Philadelphia)

  • Emily S. Kuschner

    (Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • J. Christopher Edgar

    (Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Yun Peng

    (Capital Medical University)

  • Hao Huang

    (Children’s Hospital of Philadelphia
    University of Pennsylvania)

Abstract

Infant cerebral blood flow (CBF) delivers nutrients and oxygen to fulfill brain energy consumption requirements for the fastest period of postnatal brain development across the lifespan. However, organizing principle of whole-brain CBF dynamics during infancy remains obscure. Leveraging a unique cohort of 100+ infants with high-resolution arterial spin labeled MRI, we find the emergence of the cortical hierarchy revealed by the highest-resolution infant CBF maps available to date. Infant CBF across cortical regions increases in a biphasic pattern featured by initial rapid and subsequently slower rate, and break-point ages increasing along the limbic-sensorimotor-association cortical gradient. Increases in CBF in sensorimotor cortices are associated with enhanced language and motor skills, and frontoparietal association cortices with cognitive skills. The study discovers emergence of the hierarchical limbic-sensorimotor-association cortical gradient in infancy and offers standardized reference of infant brain CBF and insight into the physiological basis of cortical specialization and real-world infant developmental functioning.

Suggested Citation

  • Minhui Ouyang & John A. Detre & Jessica L. Hyland & Kay L. Sindabizera & Emily S. Kuschner & J. Christopher Edgar & Yun Peng & Hao Huang, 2024. "Spatiotemporal cerebral blood flow dynamics underlies emergence of the limbic-sensorimotor-association cortical gradient in human infancy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53354-7
    DOI: 10.1038/s41467-024-53354-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53354-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53354-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ehsan Shokri-Kojori & Dardo Tomasi & Babak Alipanahi & Corinde E. Wiers & Gene-Jack Wang & Nora D. Volkow, 2019. "Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    3. David Attwell & Alastair M. Buchan & Serge Charpak & Martin Lauritzen & Brian A. MacVicar & Eric A. Newman, 2010. "Glial and neuronal control of brain blood flow," Nature, Nature, vol. 468(7321), pages 232-243, November.
    4. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    3. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    4. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    5. Christopher Muller & Daniel Schrage, 2014. "Mass Imprisonment and Trust in the Law," The ANNALS of the American Academy of Political and Social Science, , vol. 651(1), pages 139-158, January.
    6. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    7. Fiaschi, Davide & Lavezzi, Andrea Mario, 2007. "Nonlinear economic growth: Some theory and cross-country evidence," Journal of Development Economics, Elsevier, vol. 84(1), pages 271-290, September.
    8. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    9. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    10. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    11. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    12. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    13. Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021. "Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
    14. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    15. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    16. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    17. Koji Karato & Oleksandr Movshuk & Chihiro Shimizu, 2015. "Semiparametric Model of Hedonic Housing Prices in Japan," Asian Economic Journal, East Asian Economic Association, vol. 29(4), pages 325-345, December.
    18. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    19. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    20. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53354-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.