IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53024-8.html
   My bibliography  Save this article

Bioinspired recognition in metal-organic frameworks enabling precise sieving separation of fluorinated propylene and propane mixtures

Author

Listed:
  • Wei Xia

    (Zhejiang University
    Institute of Zhejiang University-Quzhou)

  • Zhijie Zhou

    (Zhejiang University
    Institute of Zhejiang University-Quzhou)

  • Liangzheng Sheng

    (Zhejiang University
    Institute of Zhejiang University-Quzhou)

  • Lihang Chen

    (Institute of Zhejiang University-Quzhou)

  • Fuxing Shen

    (Institute of Zhejiang University-Quzhou)

  • Fang Zheng

    (Institute of Zhejiang University-Quzhou)

  • Zhiguo Zhang

    (Zhejiang University
    Institute of Zhejiang University-Quzhou)

  • Qiwei Yang

    (Zhejiang University
    Institute of Zhejiang University-Quzhou)

  • Qilong Ren

    (Zhejiang University
    Institute of Zhejiang University-Quzhou)

  • Zongbi Bao

    (Zhejiang University
    Institute of Zhejiang University-Quzhou)

Abstract

The separation of fluorinated propane/propylene mixtures remains a major challenge in the electronics industry. Inspired by biological ion channels with negatively charged inner walls that allow selective transport of cations, we presented a series of formic acid-based metal-organic frameworks (MFA) featuring biomimetic multi-hydrogen confined cavities. These MFA materials, especially the cobalt formate (CoFA), exhibit specific recognition of hexafluoropropylene (C3F6) while facilitating size exclusion of perfluoropropane (C3F8). The dual-functional adsorbent offers multiple binding sites to realize intelligent selective recognition of C3F6, as supported by theoretical calculations and in situ spectroscopic experiments. Mixed-gas breakthrough experiments validate the capability of CoFA to produce high-purity (>5 N) C3F8 in a single step. Importantly, the stability and cost-effective scalable synthesis of CoFA underscore its extraordinary potential for industrial C3F6/C3F8 separations. This bioinspired molecular recognition approach opens new avenues for the efficient purification of fluorinated electronic specialty gases.

Suggested Citation

  • Wei Xia & Zhijie Zhou & Liangzheng Sheng & Lihang Chen & Fuxing Shen & Fang Zheng & Zhiguo Zhang & Qiwei Yang & Qilong Ren & Zongbi Bao, 2024. "Bioinspired recognition in metal-organic frameworks enabling precise sieving separation of fluorinated propylene and propane mixtures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53024-8
    DOI: 10.1038/s41467-024-53024-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53024-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53024-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Nugent & Youssef Belmabkhout & Stephen D. Burd & Amy J. Cairns & Ryan Luebke & Katherine Forrest & Tony Pham & Shengqian Ma & Brian Space & Lukasz Wojtas & Mohamed Eddaoudi & Michael J. Zaworo, 2013. "Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation," Nature, Nature, vol. 495(7439), pages 80-84, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    2. Jingqi Wang & Jiapeng Liu & Hongshuai Wang & Musen Zhou & Guolin Ke & Linfeng Zhang & Jianzhong Wu & Zhifeng Gao & Diannan Lu, 2024. "A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Qingju Wang & Jianbo Hu & Lifeng Yang & Zhaoqiang Zhang & Tian Ke & Xili Cui & Huabin Xing, 2022. "One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    5. Jiyu Cui & Fang Wu & Wen Zhang & Lifeng Yang & Jianbo Hu & Yin Fang & Peng Ye & Qiang Zhang & Xian Suo & Yiming Mo & Xili Cui & Huajun Chen & Huabin Xing, 2023. "Direct prediction of gas adsorption via spatial atom interaction learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
    7. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Recent advances in functionalized composite solid materials for carbon dioxide capture," Energy, Elsevier, vol. 124(C), pages 461-480.
    8. Qingju Wang & Lifeng Yang & Tian Ke & Jianbo Hu & Xian Suo & Xili Cui & Huabin Xing, 2024. "Selective sorting of hexane isomers by anion-functionalized metal-organic frameworks with optimal energy regulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Bacsik, Zoltán & Cheung, Ocean & Vasiliev, Petr & Hedin, Niklas, 2016. "Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56," Applied Energy, Elsevier, vol. 162(C), pages 613-621.
    10. Wang, Pengfei & Teng, Ying & Zhu, Jinlong & Bao, Wancheng & Han, Songbai & Li, Yun & Zhao, Yusheng & Xie, Heping, 2022. "Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Xiuling Chen & Yanfang Fan & Lei Wu & Linzhou Zhang & Dong Guan & Canghai Ma & Nanwen Li, 2021. "Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Dissanayake, Pavani Dulanja & You, Siming & Igalavithana, Avanthi Deshani & Xia, Yinfeng & Bhatnagar, Amit & Gupta, Souradeep & Kua, Harn Wei & Kim, Sumin & Kwon, Jung-Hwan & Tsang, Daniel C.W. & Ok, , 2020. "Biochar-based adsorbents for carbon dioxide capture: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Jian Yu & Wenting He & Bin Liu, 2020. "Adsorption of Acid Orange Ⅱ with Two Step Modified Sepiolite: Optimization, Adsorption Performance, Kinetics, Thermodynamics and Regeneration," IJERPH, MDPI, vol. 17(5), pages 1-14, March.
    14. Hengcong Huang & Luyao Wang & Xiaoyu Zhang & Hongshuo Zhao & Yifan Gu, 2022. "CO 2 -Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review," Clean Technol., MDPI, vol. 5(1), pages 1-24, December.
    15. Xinming Xia & Feng Zhou & Jing Xu & Zhongteng Wang & Jian Lan & Yan Fan & Zhikun Wang & Wei Liu & Junlang Chen & Shangshen Feng & Yusong Tu & Yizhou Yang & Liang Chen & Haiping Fang, 2022. "Unexpectedly efficient ion desorption of graphene-based materials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53024-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.