Author
Listed:
- Jinjian Li
(Zhejiang University)
- Yuting Chen
(Zhejiang University)
- Tian Ke
(Zhejiang University)
- Yuanyuan Jin
(Zhejiang University)
- Rongrong Fan
(Zhejiang University)
- Guihong Xu
(Zhejiang University)
- Liu Yang
(Zhejiang University
Institute of Zhejiang University-Quzhou)
- Zhiguo Zhang
(Zhejiang University
Institute of Zhejiang University-Quzhou)
- Zongbi Bao
(Zhejiang University
Institute of Zhejiang University-Quzhou)
- Qilong Ren
(Zhejiang University
Institute of Zhejiang University-Quzhou)
- Qiwei Yang
(Zhejiang University
Institute of Zhejiang University-Quzhou)
Abstract
Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF6, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF6 from N2. Record-high selectivities (> 2×104) and SF6 dynamic capacities (~ 2.7 mmol/g) were achieved, while exceptional SF6 productivities (~ 58.7 L/kg), yields (~ 96.8%), and recyclability (~ 1000 cycles) were demonstrated in fixed-bed adsorption-desorption experiments under mild regeneration conditions. 2D solid-state NMR/in-situ FTIR, DFT-D binding/diffusion simulation analyses revealed the multi-site binding mode and the ultra-fast diffusion of SF6 within the channels. The proposed VTSA processes successfully met the dual stringent requirements of both environmental protection and electricity equipment operation: the SF6 recovery of 99.91% accompanied with a SF6 purity/working capacity of 99.91%/2.1 mmol/g, which significantly outperformed the industrial employed adsorbent zeolite 13X and showed only 18.7% the energy consumption of the cryogenic distillation.
Suggested Citation
Jinjian Li & Yuting Chen & Tian Ke & Yuanyuan Jin & Rongrong Fan & Guihong Xu & Liu Yang & Zhiguo Zhang & Zongbi Bao & Qilong Ren & Qiwei Yang, 2025.
"Efficient continuous SF6/N2 separation using low-cost and robust metal-organic frameworks composites,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56031-5
DOI: 10.1038/s41467-025-56031-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56031-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.