IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1103-d143932.html
   My bibliography  Save this article

A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping

Author

Listed:
  • Hong-Hua Qiu

    (School of Law, Northwest University, Xi’an 710127, China
    Max Planck Institute for Innovation and Competition, Marstallplaz 1, 80539 Munich, Germany)

  • Lu-Ge Liu

    (School of Law, Northwest University, Xi’an 710127, China)

Abstract

As a useful technical measure to deal with the problem of carbon dioxide (CO 2 ) emissions, carbon capture and storage (CCS) technology has been highly regarded in both theory and practice under the promotion of the Intergovernmental Panel on Climate Change (IPCC). Knowledge mapping is helpful for understanding the evolution in terms of research topics and emerging trends in a specific domain. In this work knowledge mapping of CCS technology was investigated using CiteSpace. Several aspects of the outputs of publications in the CCS research area were analyzed, such as annual trends, countries, and institutions. The research topics in this particular technology area were analyzed based on their co-occurring keyword networks and co-citation literature networks, while, the emerging trends and research frontiers were studied through the analysis of burst keywords and citation bursts. The results indicated that the annual number of publications in the research field of CCS technology increased rapidly after 2005. There are more CCS studies published in countries from Asia, North America, and Europe, especially in the United States and China. The Chinese Academy of Sciences not only has the largest number of publications, but also has a greater impact on the research area of CCS technology, however, there are more productive institutions located in developed countries. In the research area of CCS technology, the main research topics include carbon emissions and environmental protection, research and development activities, and social practical issues, meanwhile, the main emerging trends include emerging techniques and processes, emerging materials, evaluation of technological performance, and socioeconomic analysis.

Suggested Citation

  • Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1103-:d:143932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong-Hua Qiu & Jing Yang, 2018. "An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    2. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    3. Llerena, Patrick & Oltra, Vanessa, 2002. "Diversity of innovative strategy as a source of technological performance," Structural Change and Economic Dynamics, Elsevier, vol. 13(2), pages 179-201, June.
    4. Hans Keppler & Michael Wiedenbeck & Svyatoslav S. Shcheka, 2003. "Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle," Nature, Nature, vol. 424(6947), pages 414-416, July.
    5. Zhang, Xian & Fan, Jing-Li & Wei, Yi-Ming, 2013. "Technology roadmap study on carbon capture, utilization and storage in China," Energy Policy, Elsevier, vol. 59(C), pages 536-550.
    6. Carola Braun & Christine Merk & Gert Pönitzsch & Katrin Rehdanz & Ulrich Schmidt, 2018. "Public perception of climate engineering and carbon capture and storage in Germany: survey evidence," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 471-484, April.
    7. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    8. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    9. Broecks, Kevin P.F. & van Egmond, Sander & van Rijnsoever, Frank J. & Verlinde-van den Berg, Marlies & Hekkert, Marko P., 2016. "Persuasiveness, importance and novelty of arguments about Carbon Capture and Storage," Environmental Science & Policy, Elsevier, vol. 59(C), pages 58-66.
    10. Kern, Florian & Gaede, James & Meadowcroft, James & Watson, Jim, 2016. "The political economy of carbon capture and storage: An analysis of two demonstration projects," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 250-260.
    11. Piera Centobelli & Roberto Cerchione & Emilio Esposito, 2017. "Knowledge Management in Startups: Systematic Literature Review and Future Research Agenda," Sustainability, MDPI, vol. 9(3), pages 1-19, March.
    12. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    13. van Alphen, Klaas & Noothout, Paul M. & Hekkert, Marko P. & Turkenburg, Wim C., 2010. "Evaluating the development of carbon capture and storage technologies in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 971-986, April.
    14. Konur, Ozcan, 2011. "The scientometric evaluation of the research on the algae and bio-energy," Applied Energy, Elsevier, vol. 88(10), pages 3532-3540.
    15. Carlo Strazza & Adriana Del Borghi & Michela Gallo, 2013. "Development of Specific Rules for the Application of Life Cycle Assessment to Carbon Capture and Storage," Energies, MDPI, vol. 6(3), pages 1-16, March.
    16. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    17. Chen, Kaihua & Guan, Jiancheng, 2011. "A bibliometric investigation of research performance in emerging nanobiopharmaceuticals," Journal of Informetrics, Elsevier, vol. 5(2), pages 233-247.
    18. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    19. Patrick Nugent & Youssef Belmabkhout & Stephen D. Burd & Amy J. Cairns & Ryan Luebke & Katherine Forrest & Tony Pham & Shengqian Ma & Brian Space & Lukasz Wojtas & Mohamed Eddaoudi & Michael J. Zaworo, 2013. "Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation," Nature, Nature, vol. 495(7439), pages 80-84, March.
    20. Andrea M. Feldpausch-Parker & Morey Burnham & Maryna Melnik & Meaghan L. Callaghan & Theresa Selfa, 2015. "News Media Analysis of Carbon Capture and Storage and Biomass: Perceptions and Possibilities," Energies, MDPI, vol. 8(4), pages 1-17, April.
    21. Shackley, Simon & Waterman, Holly & Godfroij, Per & Reiner, David & Anderson, Jason & Draxlbauer, Kathy & Flach, Todd, 2007. "Stakeholder perceptions of CO2 capture and storage in Europe: Results from a survey," Energy Policy, Elsevier, vol. 35(10), pages 5091-5108, October.
    22. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minbeom Lee & Yikyeom Kim & Hyun Suk Lim & Ayeong Jo & Dohyung Kang & Jae W. Lee, 2020. "Reverse Water–Gas Shift Chemical Looping Using a Core–Shell Structured Perovskite Oxygen Carrier," Energies, MDPI, vol. 13(20), pages 1-12, October.
    2. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    4. Lin, Boqiang & Su, Tong, 2020. "Mapping the oil price-stock market nexus researches: A scientometric review," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 133-147.
    5. Taotao Yan & Jianhui Xue & Zhidong Zhou & Yongbo Wu, 2020. "The Trends in Research on the Effects of Biochar on Soil," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    6. Jingwei Wang & Jinhe Zhang & Peijia Wang & Xiaobin Ma & Liangjian Yang & Leying Zhou, 2022. "Progress in Ecosystem Health Research and Future Prospects," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    7. Hui Yang & Xuexin Shao & Ming Wu, 2019. "A Review on Ecosystem Health Research: A Visualization Based on CiteSpace," Sustainability, MDPI, vol. 11(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Wang, Xinxin & Xu, Zeshui & Qin, Yong & Skare, Marinko, 2021. "Service networks for sustainable business: A dynamic evolution analysis over half a century," Journal of Business Research, Elsevier, vol. 136(C), pages 543-557.
    3. Hui Yang & Xuexin Shao & Ming Wu, 2019. "A Review on Ecosystem Health Research: A Visualization Based on CiteSpace," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    4. Lai, Xianjin & Ye, Zhonghua & Xu, Zhengzhong & Husar Holmes, Maja & Henry Lambright, W., 2012. "Carbon capture and sequestration (CCS) technological innovation system in China: Structure, function evaluation and policy implication," Energy Policy, Elsevier, vol. 50(C), pages 635-646.
    5. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    6. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    7. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    8. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    9. Lorraine Whitmarsh & Dimitrios Xenias & Christopher R. Jones, 2019. "Framing effects on public support for carbon capture and storage," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    10. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    11. Siefert, Nicholas S. & Chang, Brian Y. & Litster, Shawn, 2014. "Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS," Applied Energy, Elsevier, vol. 128(C), pages 230-245.
    12. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    13. Mauricio Marrone, 2020. "Application of entity linking to identify research fronts and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 357-379, January.
    14. Wenwen Zhu & Zhiqiang Wang, 2018. "The Collaborative Networks and Thematic Trends of Research on Purchasing and Supply Management for Environmental Sustainability: A Bibliometric Review," Sustainability, MDPI, vol. 10(5), pages 1-28, May.
    15. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.
    16. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    17. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    18. Hoang Anh Nguyen Trinh & Minh Ha-Duong, 2015. "Perspective of CO2 capture & storage (CCS) development in Vietnam: Results from expert interviews," Post-Print hal-01137656, HAL.
    19. Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
    20. Peng Wang & Fang-Wei Zhu & Hao-Yang Song & Jian-Hua Hou & Jin-Lan Zhang, 2018. "Visualizing the Academic Discipline of Knowledge Management," Sustainability, MDPI, vol. 10(3), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1103-:d:143932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.