IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52973-4.html
   My bibliography  Save this article

Therapeutic targeting of differentiation-state dependent metabolic vulnerabilities in diffuse midline glioma

Author

Listed:
  • Nneka E. Mbah

    (University of Michigan
    University of Michigan)

  • Amy L. Myers

    (University of Michigan
    University of Michigan)

  • Peter Sajjakulnukit

    (University of Michigan
    University of Michigan)

  • Chan Chung

    (University of Michigan
    University of Michigan Medical School
    Daegu Gyeongbuk Institute of Science and Technology (DGIST))

  • Joyce K. Thompson

    (University of Michigan)

  • Hanna S. Hong

    (University of Michigan)

  • Heather Giza

    (University of Michigan)

  • Derek Dang

    (University of Michigan
    University of Michigan Medical School
    University of Michigan)

  • Zeribe C. Nwosu

    (University of Michigan)

  • Mengrou Shan

    (University of Michigan)

  • Stefan R. Sweha

    (University of Michigan
    University of Michigan Medical School
    University of Michigan)

  • Daniella D. Maydan

    (University of Michigan)

  • Brandon Chen

    (University of Michigan
    University of Michigan)

  • Li Zhang

    (University of Michigan)

  • Brian Magnuson

    (University of Michigan)

  • Zirui Zhu

    (University of Michigan)

  • Megan Radyk

    (University of Michigan)

  • Brooke Lavoie

    (University of Michigan)

  • Viveka Nand Yadav

    (Children’s Mercy Research Institute (CMRI))

  • Imhoi Koo

    (Pennsylvania State University)

  • Andrew D. Patterson

    (the Pennsylvania State University)

  • Daniel R. Wahl

    (University of Michigan
    University of Michigan Medical School)

  • Luigi Franchi

    (University of Michigan Medical School)

  • Sameer Agnihotri

    (University of Pittsburgh Hillman Cancer Center)

  • Carl J. Koschmann

    (University of Michigan
    University of Michigan Medical School)

  • Sriram Venneti

    (University of Michigan
    University of Michigan Medical School
    University of Michigan Medical School
    University of Michigan Medical School)

  • Costas A. Lyssiotis

    (University of Michigan
    University of Michigan
    University of Michigan
    University of Michigan)

Abstract

H3K27M diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), exhibit cellular heterogeneity comprising less-differentiated oligodendrocyte precursors (OPC)-like stem cells and more differentiated astrocyte (AC)-like cells. Here, we establish in vitro models that recapitulate DMG-OPC-like and AC-like phenotypes and perform transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs in the different cellular states. We then define strategies to target metabolic vulnerabilities within specific tumor populations. We show that AC-like cells exhibit a mesenchymal phenotype and are sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulate cholesterol biosynthesis, have diminished mitochondrial oxidative phosphorylation (OXPHOS), and are accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors show efficacy and extend survival in preclinical orthotopic models established with stem-like H3K27M DMG cells. Together, this study demonstrates that cellular subtypes within DMGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.

Suggested Citation

  • Nneka E. Mbah & Amy L. Myers & Peter Sajjakulnukit & Chan Chung & Joyce K. Thompson & Hanna S. Hong & Heather Giza & Derek Dang & Zeribe C. Nwosu & Mengrou Shan & Stefan R. Sweha & Daniella D. Maydan , 2024. "Therapeutic targeting of differentiation-state dependent metabolic vulnerabilities in diffuse midline glioma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52973-4
    DOI: 10.1038/s41467-024-52973-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52973-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52973-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cristovão M. Sousa & Douglas E. Biancur & Xiaoxu Wang & Christopher J. Halbrook & Mara H. Sherman & Li Zhang & Daniel Kremer & Rosa F. Hwang & Agnes K. Witkiewicz & Haoqiang Ying & John M. Asara & Ron, 2016. "Erratum: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion," Nature, Nature, vol. 540(7631), pages 150-150, December.
    2. Vasanthi S. Viswanathan & Matthew J. Ryan & Harshil D. Dhruv & Shubhroz Gill & Ossia M. Eichhoff & Brinton Seashore-Ludlow & Samuel D. Kaffenberger & John K. Eaton & Kenichi Shimada & Andrew J. Aguirr, 2017. "Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway," Nature, Nature, vol. 547(7664), pages 453-457, July.
    3. Jeremy Schwartzentruber & Andrey Korshunov & Xiao-Yang Liu & David T. W. Jones & Elke Pfaff & Karine Jacob & Dominik Sturm & Adam M. Fontebasso & Dong-Anh Khuong Quang & Martje Tönjes & Volker Hovesta, 2012. "Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma," Nature, Nature, vol. 482(7384), pages 226-231, February.
    4. Florencio Porto Freitas & Hamed Alborzinia & Ancély Ferreira dos Santos & Palina Nepachalovich & Lohans Pedrera & Omkar Zilka & Alex Inague & Corinna Klein & Nesrine Aroua & Kamini Kaushal & Bettina K, 2024. "7-Dehydrocholesterol is an endogenous suppressor of ferroptosis," Nature, Nature, vol. 626(7998), pages 401-410, February.
    5. Cristovão M. Sousa & Douglas E. Biancur & Xiaoxu Wang & Christopher J. Halbrook & Mara H. Sherman & Li Zhang & Daniel Kremer & Rosa F. Hwang & Agnes K. Witkiewicz & Haoqiang Ying & John M. Asara & Ron, 2016. "Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion," Nature, Nature, vol. 536(7617), pages 479-483, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianbing Zhu & Zheng Fu & Shary Y. Chen & Dionzie Ong & Giulio Aceto & Rebecca Ho & Jutta Steinberger & Anie Monast & Virginie Pilon & Eunice Li & Monica Ta & Kyle Ching & Bianca N. Adams & Gian L. Ne, 2023. "Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Ali Vaziri-Gohar & Jonathan J. Hue & Ata Abbas & Hallie J. Graor & Omid Hajihassani & Mehrdad Zarei & George Titomihelakis & John Feczko & Moeez Rathore & Sylwia Chelstowska & Alexander W. Loftus & Ru, 2023. "Increased glucose availability sensitizes pancreatic cancer to chemotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Yuying Tan & Junjie Li & Guangyuan Zhao & Kai-Chih Huang & Horacio Cardenas & Yinu Wang & Daniela Matei & Ji-Xin Cheng, 2022. "Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Benjamin A. Nacev & Yakshi Dabas & Matthew R. Paul & Christian Pacheco & Michelle Mitchener & Yekaterina Perez & Yan Fang & Alexey A. Soshnev & Douglas Barrows & Thomas Carroll & Nicholas D. Socci & S, 2024. "Cancer-associated Histone H3 N-terminal arginine mutations disrupt PRC2 activity and impair differentiation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Augusto Faria Andrade & Alva Annett & Elham Karimi & Danai Georgia Topouza & Morteza Rezanejad & Yitong Liu & Michael McNicholas & Eduardo G. Gonzalez Santiago & Dhana Llivichuzhca-Loja & Arne Gehlhaa, 2024. "Immune landscape of oncohistone-mutant gliomas reveals diverse myeloid populations and tumor-promoting function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Jun Jiang & Lili Yang & Qianqian Xie & Xi Liu & Jie Jiang & Jie Zhang & Shuping Zhang & Huizhen Zheng & Wenjie Li & Xiaoming Cai & Sijin Liu & Ruibin Li, 2024. "Synthetic vectors for activating the driving axis of ferroptosis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Jenna E. Leeuwen & Wail Ba-Alawi & Emily Branchard & Jennifer Cruickshank & Wiebke Schormann & Joseph Longo & Jennifer Silvester & Peter L. Gross & David W. Andrews & David W. Cescon & Benjamin Haibe-, 2022. "Computational pharmacogenomic screen identifies drugs that potentiate the anti-breast cancer activity of statins," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Heike Chauvistré & Batool Shannan & Sheena M. Daignault-Mill & Robert J. Ju & Daniel Picard & Stefanie Egetemaier & Renáta Váraljai & Christine S. Gibhardt & Antonio Sechi & Farnusch Kaschani & Oliver, 2022. "Persister state-directed transitioning and vulnerability in melanoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Ulrik Kristoffer Stoltze & Jon Foss-Skiftesvik & Thomas van Overeem Hansen & Simon Rasmussen & Konrad J. Karczewski & Karin A. W. Wadt & Kjeld Schmiegelow, 2024. "The evolutionary impact of childhood cancer on the human gene pool," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Bartosz Wiernicki & Sophia Maschalidi & Jonathan Pinney & Sandy Adjemian & Tom Vanden Berghe & Kodi S. Ravichandran & Peter Vandenabeele, 2022. "Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Faye M. Walker & Lays Martin Sobral & Etienne Danis & Bridget Sanford & Sahiti Donthula & Ilango Balakrishnan & Dong Wang & Angela Pierce & Sana D. Karam & Soudabeh Kargar & Natalie J. Serkova & Nicho, 2024. "Rapid P-TEFb-dependent transcriptional reorganization underpins the glioma adaptive response to radiotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    17. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52973-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.