IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29905-1.html
   My bibliography  Save this article

A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers

Author

Listed:
  • Pranavi Koppula

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences)

  • Guang Lei

    (The University of Texas MD Anderson Cancer Center)

  • Yilei Zhang

    (The University of Texas MD Anderson Cancer Center)

  • Yuelong Yan

    (The University of Texas MD Anderson Cancer Center)

  • Chao Mao

    (The University of Texas MD Anderson Cancer Center)

  • Lavanya Kondiparthi

    (Kadmon Corporation, LLC)

  • Jiejun Shi

    (University of California)

  • Xiaoguang Liu

    (The University of Texas MD Anderson Cancer Center)

  • Amber Horbath

    (The University of Texas MD Anderson Cancer Center)

  • Molina Das

    (The University of Texas MD Anderson Cancer Center)

  • Wei Li

    (University of California)

  • Masha V. Poyurovsky

    (Kadmon Corporation, LLC)

  • Kellen Olszewski

    (Kadmon Corporation, LLC
    The Barer Institute)

  • Boyi Gan

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences)

Abstract

Targeting ferroptosis, a unique cell death modality triggered by unrestricted lipid peroxidation, in cancer therapy is hindered by our incomplete understanding of ferroptosis mechanisms under specific cancer genetic contexts. KEAP1 (kelch-like ECH associated protein 1) is frequently mutated or inactivated in lung cancers, and KEAP1 mutant lung cancers are refractory to most therapies, including radiotherapy. In this study, we identify ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and reveal that the ubiquinone (CoQ)-FSP1 axis mediates ferroptosis- and radiation- resistance in KEAP1 deficient lung cancer cells. We further show that pharmacological inhibition of the CoQ-FSP1 axis sensitizes KEAP1 deficient lung cancer cells or patient-derived xenograft tumors to radiation through inducing ferroptosis. Together, our study identifies CoQ-FSP1 as a key downstream effector of KEAP1-NRF2 pathway and as a potential therapeutic target for treating KEAP1 mutant lung cancers.

Suggested Citation

  • Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29905-1
    DOI: 10.1038/s41467-022-29905-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29905-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29905-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yilei Zhang & Robert V. Swanda & Litong Nie & Xiaoguang Liu & Chao Wang & Hyemin Lee & Guang Lei & Chao Mao & Pranavi Koppula & Weijie Cheng & Jie Zhang & Zhenna Xiao & Li Zhuang & Bingliang Fang & Ju, 2021. "mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Le Jiang & Ning Kon & Tongyuan Li & Shang-Jui Wang & Tao Su & Hanina Hibshoosh & Richard Baer & Wei Gu, 2015. "Ferroptosis as a p53-mediated activity during tumour suppression," Nature, Nature, vol. 520(7545), pages 57-62, April.
    3. Weimin Wang & Michael Green & Jae Eun Choi & Miguel Gijón & Paul D. Kennedy & Jeffrey K. Johnson & Peng Liao & Xueting Lang & Ilona Kryczek & Amanda Sell & Houjun Xia & Jiajia Zhou & Gaopeng Li & Jing, 2019. "CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy," Nature, Nature, vol. 569(7755), pages 270-274, May.
    4. Jiao Wu & Alexander M. Minikes & Minghui Gao & Huijie Bian & Yong Li & Brent R. Stockwell & Zhi-Nan Chen & Xuejun Jiang, 2019. "Publisher Correction: Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling," Nature, Nature, vol. 572(7770), pages 20-20, August.
    5. Sebastian Doll & Florencio Porto Freitas & Ron Shah & Maceler Aldrovandi & Milene Costa Silva & Irina Ingold & Andrea Goya Grocin & Thamara Nishida Xavier da Silva & Elena Panzilius & Christina H. Sch, 2019. "FSP1 is a glutathione-independent ferroptosis suppressor," Nature, Nature, vol. 575(7784), pages 693-698, November.
    6. Jessalyn M. Ubellacker & Alpaslan Tasdogan & Vijayashree Ramesh & Bo Shen & Evann C. Mitchell & Misty S. Martin-Sandoval & Zhimin Gu & Michael L. McCormick & Alison B. Durham & Douglas R. Spitz & Zhiy, 2020. "Lymph protects metastasizing melanoma cells from ferroptosis," Nature, Nature, vol. 585(7823), pages 113-118, September.
    7. Vasanthi S. Viswanathan & Matthew J. Ryan & Harshil D. Dhruv & Shubhroz Gill & Ossia M. Eichhoff & Brinton Seashore-Ludlow & Samuel D. Kaffenberger & John K. Eaton & Kenichi Shimada & Andrew J. Aguirr, 2017. "Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway," Nature, Nature, vol. 547(7664), pages 453-457, July.
    8. Zhen-Dong Xiao & Leng Han & Hyemin Lee & Li Zhuang & Yilei Zhang & Joelle Baddour & Deepak Nagrath & Christopher G. Wood & Jian Gu & Xifeng Wu & Han Liang & Boyi Gan, 2017. "Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    9. Jiao Wu & Alexander M. Minikes & Minghui Gao & Huijie Bian & Yong Li & Brent R. Stockwell & Zhi-Nan Chen & Xuejun Jiang, 2019. "Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling," Nature, Nature, vol. 572(7769), pages 402-406, August.
    10. Matthew J. Hangauer & Vasanthi S. Viswanathan & Matthew J. Ryan & Dhruv Bole & John K. Eaton & Alexandre Matov & Jacqueline Galeas & Harshil D. Dhruv & Michael E. Berens & Stuart L. Schreiber & Frank , 2017. "Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition," Nature, Nature, vol. 551(7679), pages 247-250, November.
    11. Kirill Bersuker & Joseph M. Hendricks & Zhipeng Li & Leslie Magtanong & Breanna Ford & Peter H. Tang & Melissa A. Roberts & Bingqi Tong & Thomas J. Maimone & Roberto Zoncu & Michael C. Bassik & Daniel, 2019. "The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis," Nature, Nature, vol. 575(7784), pages 688-692, November.
    12. Chao Mao & Xiaoguang Liu & Yilei Zhang & Guang Lei & Yuelong Yan & Hyemin Lee & Pranavi Koppula & Shiqi Wu & Li Zhuang & Bingliang Fang & Masha V. Poyurovsky & Kellen Olszewski & Boyi Gan, 2021. "DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer," Nature, Nature, vol. 593(7860), pages 586-590, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuelong Yan & Hongqi Teng & Qinglei Hang & Lavanya Kondiparthi & Guang Lei & Amber Horbath & Xiaoguang Liu & Chao Mao & Shiqi Wu & Li Zhuang & M. James You & Masha V. Poyurovsky & Li Ma & Kellen Olsze, 2023. "SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Hyemin Lee & Amber Horbath & Lavanya Kondiparthi & Jitendra Kumar Meena & Guang Lei & Shayani Dasgupta & Xiaoguang Liu & Li Zhuang & Pranavi Koppula & Mi Li & Iqbal Mahmud & Bo Wei & Philip L. Lorenzi, 2024. "Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Guoshu Bi & Jiaqi Liang & Yunyi Bian & Guangyao Shan & Yiwei Huang & Tao Lu & Huan Zhang & Xing Jin & Zhencong Chen & Mengnan Zhao & Hong Fan & Qun Wang & Boyi Gan & Cheng Zhan, 2024. "Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Bartosz Wiernicki & Sophia Maschalidi & Jonathan Pinney & Sandy Adjemian & Tom Vanden Berghe & Kodi S. Ravichandran & Peter Vandenabeele, 2022. "Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Yuelong Yan & Hongqi Teng & Qinglei Hang & Lavanya Kondiparthi & Guang Lei & Amber Horbath & Xiaoguang Liu & Chao Mao & Shiqi Wu & Li Zhuang & M. James You & Masha V. Poyurovsky & Li Ma & Kellen Olsze, 2023. "SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Yandi Wu & Tongsheng Huang & Xinghui Li & Conghui Shen & Honglin Ren & Haiping Wang & Teng Wu & Xinlu Fu & Shijie Deng & Ziqi Feng & Shijie Xiong & Hui Li & Saifei Gao & Zhenyu Yang & Fei Gao & Lele D, 2023. "Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Xinyi Shan & Jiahuan Li & Jiahao Liu & Baoli Feng & Ting Zhang & Qian Liu & Huixin Ma & Honghong Wu & Hao Wu, 2023. "Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Wei Yang & Bo Mu & Jing You & Chenyu Tian & Huachao Bin & Zhiqiang Xu & Liting Zhang & Ronggang Ma & Ming Wu & Guo Zhang & Chong Huang & Linli Li & Zhenhua Shao & Lunzhi Dai & Laurent Désaubry & Sheng, 2022. "Non-classical ferroptosis inhibition by a small molecule targeting PHB2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Yun Lv & Chunhui Liang & Qichao Sun & Jing Zhu & Haiyan Xu & Xiaoqing Li & Yao-yao Li & Qihai Wang & Huiqing Yuan & Bo Chu & Deyu Zhu, 2023. "Structural insights into FSP1 catalysis and ferroptosis inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Da-Yun Jin & Xuejie Chen & Yizhou Liu & Craig M. Williams & Lars C. Pedersen & Darrel W. Stafford & Jian-Ke Tie, 2023. "A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Hyemin Lee & Amber Horbath & Lavanya Kondiparthi & Jitendra Kumar Meena & Guang Lei & Shayani Dasgupta & Xiaoguang Liu & Li Zhuang & Pranavi Koppula & Mi Li & Iqbal Mahmud & Bo Wei & Philip L. Lorenzi, 2024. "Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Xin Chen & Jun Huang & Chunhua Yu & Jiao Liu & Wanli Gao & Jingbo Li & Xinxin Song & Zhuan Zhou & Changfeng Li & Yangchun Xie & Guido Kroemer & Jinbao Liu & Daolin Tang & Rui Kang, 2022. "A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Di-Yang Sun & Wen-Bin Wu & Jian-Jin Wu & Yu Shi & Jia-Jun Xu & Shen-Xi Ouyang & Chen Chi & Yi Shi & Qing-Xin Ji & Jin-Hao Miao & Jiang-Tao Fu & Jie Tong & Ping-Ping Zhang & Jia-Bao Zhang & Zhi-Yong Li, 2024. "Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    14. Heike Chauvistré & Batool Shannan & Sheena M. Daignault-Mill & Robert J. Ju & Daniel Picard & Stefanie Egetemaier & Renáta Váraljai & Christine S. Gibhardt & Antonio Sechi & Farnusch Kaschani & Oliver, 2022. "Persister state-directed transitioning and vulnerability in melanoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Zhe Wang & Xin Yang & Delin Chen & Yanqing Liu & Zhiming Li & Shoufu Duan & Zhiguo Zhang & Xuejun Jiang & Brent R. Stockwell & Wei Gu, 2024. "GAS41 modulates ferroptosis by anchoring NRF2 on chromatin," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Xin-yu He & Xiao Fan & Lei Qu & Xiang Wang & Li Jiang & Ling-jie Sang & Cheng-yu Shi & Siyi Lin & Jie-cheng Yang & Zuo-zhen Yang & Kai Lei & Jun-hong Li & Huai-qiang Ju & Qingfeng Yan & Jian Liu & Fud, 2023. "LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Samya Van Coillie & Emily Van San & Ines Goetschalckx & Bartosz Wiernicki & Banibrata Mukhopadhyay & Wulf Tonnus & Sze Men Choi & Ria Roelandt & Catalina Dumitrascu & Ludwig Lamberts & Geert Dams & Wa, 2022. "Targeting ferroptosis protects against experimental (multi)organ dysfunction and death," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Juliane Tschuck & Lea Theilacker & Ina Rothenaigner & Stefanie A. I. Weiß & Banu Akdogan & Van Thanh Lam & Constanze Müller & Roman Graf & Stefanie Brandner & Christian Pütz & Tamara Rieder & Philippe, 2023. "Farnesoid X receptor activation by bile acids suppresses lipid peroxidation and ferroptosis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Feixia Wang & Yifeng Liu & Feida Ni & Jiani Jin & Yiqing Wu & Yun Huang & Xiaohang Ye & Xilin Shen & Yue Ying & Jianhua Chen & Ruixue Chen & Yanye Zhang & Xiao Sun & Siwen Wang & Xiao Xu & Chuan Chen , 2022. "BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29905-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.