IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30641-9.html
   My bibliography  Save this article

Persister state-directed transitioning and vulnerability in melanoma

Author

Listed:
  • Heike Chauvistré

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf)

  • Batool Shannan

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf)

  • Sheena M. Daignault-Mill

    (The University of Queensland Diamantina Institute, The University of Queensland)

  • Robert J. Ju

    (The University of Queensland Diamantina Institute, The University of Queensland)

  • Daniel Picard

    (German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    German Cancer Research Center (DKFZ)
    Medical Faculty, University Hospital Düsseldorf
    Medical Faculty, Heinrich Heine University)

  • Stefanie Egetemaier

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf)

  • Renáta Váraljai

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf)

  • Christine S. Gibhardt

    (University Medical Center, Georg-August-University)

  • Antonio Sechi

    (RWTH Aachen University Medical School)

  • Farnusch Kaschani

    (University of Duisburg-Essen
    University of Duisburg-Essen)

  • Oliver Keminer

    (Fraunhofer Institute for Translational Medicine and Pharmacology ITMP
    Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD)

  • Samantha J. Stehbens

    (The University of Queensland Diamantina Institute, The University of Queensland)

  • Qin Liu

    (The Wistar Institute)

  • Xiangfan Yin

    (The Wistar Institute)

  • Kirujan Jeyakumar

    (TU Dortmund University)

  • Felix C. E. Vogel

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    German Cancer Research Center (DKFZ))

  • Clemens Krepler

    (The Wistar Institute)

  • Vito W. Rebecca

    (The Wistar Institute)

  • Linda Kubat

    (German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen)

  • Smiths S. Lueong

    (German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    West German Cancer Center, University Hospital Essen)

  • Jan Forster

    (German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    University Hospital Essen, University Duisburg-Essen)

  • Susanne Horn

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf)

  • Marc Remke

    (German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    German Cancer Research Center (DKFZ)
    Medical Faculty, University Hospital Düsseldorf
    Medical Faculty, Heinrich Heine University)

  • Michael Ehrmann

    (University of Duisburg-Essen
    Department of Microbiology, University of Duisburg-Essen)

  • Annette Paschen

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf)

  • Jürgen C. Becker

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen)

  • Iris Helfrich

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf)

  • Daniel Rauh

    (TU Dortmund University)

  • Markus Kaiser

    (University of Duisburg-Essen
    University of Duisburg-Essen)

  • Sheraz Gul

    (Fraunhofer Institute for Translational Medicine and Pharmacology ITMP
    Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD)

  • Meenhard Herlyn

    (The Wistar Institute)

  • Ivan Bogeski

    (University Medical Center, Georg-August-University)

  • José Neptuno Rodríguez-López

    (Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia)

  • Nikolas K. Haass

    (The University of Queensland Diamantina Institute, The University of Queensland)

  • Dirk Schadendorf

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    University of Duisburg-Essen)

  • Alexander Roesch

    (University Hospital Essen, West German Cancer Center, University Duisburg-Essen
    German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf
    University of Duisburg-Essen)

Abstract

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(–)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.

Suggested Citation

  • Heike Chauvistré & Batool Shannan & Sheena M. Daignault-Mill & Robert J. Ju & Daniel Picard & Stefanie Egetemaier & Renáta Váraljai & Christine S. Gibhardt & Antonio Sechi & Farnusch Kaschani & Oliver, 2022. "Persister state-directed transitioning and vulnerability in melanoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30641-9
    DOI: 10.1038/s41467-022-30641-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30641-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30641-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sydney M. Shaffer & Margaret C. Dunagin & Stefan R. Torborg & Eduardo A. Torre & Benjamin Emert & Clemens Krepler & Marilda Beqiri & Katrin Sproesser & Patricia A. Brafford & Min Xiao & Elliott Eggan , 2017. "Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance," Nature, Nature, vol. 546(7658), pages 431-435, June.
    2. Vasanthi S. Viswanathan & Matthew J. Ryan & Harshil D. Dhruv & Shubhroz Gill & Ossia M. Eichhoff & Brinton Seashore-Ludlow & Samuel D. Kaffenberger & John K. Eaton & Kenichi Shimada & Andrew J. Aguirr, 2017. "Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway," Nature, Nature, vol. 547(7664), pages 453-457, July.
    3. Julia Joung & Jesse M. Engreitz & Silvana Konermann & Omar O. Abudayyeh & Vanessa K. Verdine & Francois Aguet & Jonathan S. Gootenberg & Neville E. Sanjana & Jason B. Wright & Charles P. Fulco & Yuen-, 2017. "Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood," Nature, Nature, vol. 548(7667), pages 343-346, August.
    4. Julia Joung & Jesse M. Engreitz & Silvana Konermann & Omar O. Abudayyeh & Vanessa K. Verdine & Francois Aguet & Jonathan S. Gootenberg & Neville E. Sanjana & Jason B. Wright & Charles P. Fulco & Yuen-, 2017. "Erratum: Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood," Nature, Nature, vol. 549(7672), pages 418-418, September.
    5. Matthew J. Hangauer & Vasanthi S. Viswanathan & Matthew J. Ryan & Dhruv Bole & John K. Eaton & Alexandre Matov & Jacqueline Galeas & Harshil D. Dhruv & Michael E. Berens & Stuart L. Schreiber & Frank , 2017. "Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition," Nature, Nature, vol. 551(7679), pages 247-250, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasia Samarkina & Markus Kirolos Youssef & Paola Ostano & Soumitra Ghosh & Min Ma & Beatrice Tassone & Tatiana Proust & Giovanna Chiorino & Mitchell P. Levesque & Sandro Goruppi & Gian Paolo Dotto, 2023. "Androgen receptor is a determinant of melanoma targeted drug resistance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Jun Jiang & Lili Yang & Qianqian Xie & Xi Liu & Jie Jiang & Jie Zhang & Shuping Zhang & Huizhen Zheng & Wenjie Li & Xiaoming Cai & Sijin Liu & Ruibin Li, 2024. "Synthetic vectors for activating the driving axis of ferroptosis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Adam E. Hall & Sebastian Öther-Gee Pohl & Patrizia Cammareri & Stuart Aitken & Nicholas T. Younger & Michela Raponi & Caroline V. Billard & Alfonso Bolado Carrancio & Aslihan Bastem & Paz Freile & Fio, 2022. "RNA splicing is a key mediator of tumour cell plasticity and a therapeutic vulnerability in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Bartosz Wiernicki & Sophia Maschalidi & Jonathan Pinney & Sandy Adjemian & Tom Vanden Berghe & Kodi S. Ravichandran & Peter Vandenabeele, 2022. "Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Xiaolong Cheng & Zexu Li & Ruocheng Shan & Zihan Li & Shengnan Wang & Wenchang Zhao & Han Zhang & Lumen Chao & Jian Peng & Teng Fei & Wei Li, 2023. "Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Florence M. Chardon & Troy A. McDiarmid & Nicholas F. Page & Riza M. Daza & Beth K. Martin & Silvia Domcke & Samuel G. Regalado & Jean-Benoît Lalanne & Diego Calderon & Xiaoyi Li & Lea M. Starita & St, 2024. "Multiplex, single-cell CRISPRa screening for cell type specific regulatory elements," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Franziska Haderk & Yu-Ting Chou & Lauren Cech & Celia Fernández-Méndez & Johnny Yu & Victor Olivas & Ismail M. Meraz & Dora Barbosa Rabago & D. Lucas Kerr & Carlos Gomez & David V. Allegakoen & Juan G, 2024. "Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    16. Xue Zhang & Shishir M. Pant & Cecily C. Ritch & Hsin-Yao Tang & Hongguang Shao & Harsh Dweep & Yao-Yu Gong & Rebekah Brooks & Patricia Brafford & Adam J. Wolpaw & Yool Lee & Ashani Weeraratna & Amita , 2024. "Cell state dependent effects of Bmal1 on melanoma immunity and tumorigenicity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Jenna E. Leeuwen & Wail Ba-Alawi & Emily Branchard & Jennifer Cruickshank & Wiebke Schormann & Joseph Longo & Jennifer Silvester & Peter L. Gross & David W. Andrews & David W. Cescon & Benjamin Haibe-, 2022. "Computational pharmacogenomic screen identifies drugs that potentiate the anti-breast cancer activity of statins," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Yelyzaveta Shlyakhtina & Bianca Bloechl & Maximiliano M. Portal, 2023. "BdLT-Seq as a barcode decay-based method to unravel lineage-linked transcriptome plasticity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Yufan Zhou & Tian Li & Lavanya Choppavarapu & Kun Fang & Shili Lin & Victor X. Jin, 2024. "Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30641-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.