IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35202-8.html
   My bibliography  Save this article

Membrane-mediated protein interactions drive membrane protein organization

Author

Listed:
  • Yining Jiang

    (Weill Cornell Graduate School of Biomedical Sciences
    Weill Cornell Medicine, Department of Anesthesiology)

  • Batiste Thienpont

    (Aix Marseille Université)

  • Vinay Sapuru

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Graduate School of Biomedical Sciences)

  • Richard K. Hite

    (Memorial Sloan Kettering Cancer Center)

  • Jeremy S. Dittman

    (Weill Cornell Medicine, Department of Biochemistry)

  • James N. Sturgis

    (Aix Marseille Université)

  • Simon Scheuring

    (Weill Cornell Medicine, Department of Anesthesiology
    Weill Cornell Medicine, Department of Physiology and Biophysics
    Cornell University)

Abstract

The plasma membrane’s main constituents, i.e., phospholipids and membrane proteins, are known to be organized in lipid-protein functional domains and supercomplexes. No active membrane-intrinsic process is known to establish membrane organization. Thus, the interplay of thermal fluctuations and the biophysical determinants of membrane-mediated protein interactions must be considered to understand membrane protein organization. Here, we used high-speed atomic force microscopy and kinetic and membrane elastic theory to investigate the behavior of a model membrane protein in oligomerization and assembly in controlled lipid environments. We find that membrane hydrophobic mismatch modulates oligomerization and assembly energetics, and 2D organization. Our experimental and theoretical frameworks reveal how membrane organization can emerge from Brownian diffusion and a minimal set of physical properties of the membrane constituents.

Suggested Citation

  • Yining Jiang & Batiste Thienpont & Vinay Sapuru & Richard K. Hite & Jeremy S. Dittman & James N. Sturgis & Simon Scheuring, 2022. "Membrane-mediated protein interactions drive membrane protein organization," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35202-8
    DOI: 10.1038/s41467-022-35202-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35202-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35202-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rob Phillips & Tristan Ursell & Paul Wiggins & Pierre Sens, 2009. "Emerging roles for lipids in shaping membrane-protein function," Nature, Nature, vol. 459(7245), pages 379-385, May.
    2. Donald M. Engelman, 2005. "Membranes are more mosaic than fluid," Nature, Nature, vol. 438(7068), pages 578-580, December.
    3. Benedict J. Reynwar & Gregoria Illya & Vagelis A. Harmandaris & Martin M. Müller & Kurt Kremer & Markus Deserno, 2007. "Aggregation and vesiculation of membrane proteins by curvature-mediated interactions," Nature, Nature, vol. 447(7143), pages 461-464, May.
    4. George R. Heath & Simon Scheuring, 2018. "High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. George R. Heath & Ekaterina Kots & Janice L. Robertson & Shifra Lansky & George Khelashvili & Harel Weinstein & Simon Scheuring, 2021. "Localization atomic force microscopy," Nature, Nature, vol. 594(7863), pages 385-390, June.
    6. Tristan Ursell & Kerwyn Casey Huang & Eric Peterson & Rob Phillips, 2007. "Cooperative Gating and Spatial Organization of Membrane Proteins through Elastic Interactions," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yat Ho Chan & Koralege C. Pathmasiri & Dominick Pierre-Jacques & Maddison C. Hibbard & Nannan Tao & Joshua L. Fischer & Ethan Yang & Stephanie M. Cologna & Ruixuan Gao, 2024. "Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Emma C. Couves & Scott Gardner & Tomas B. Voisin & Jasmine K. Bickel & Phillip J. Stansfeld & Edward W. Tate & Doryen Bubeck, 2023. "Structural basis for membrane attack complex inhibition by CD59," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Justin A. Peruzzi & Jan Steinkühler & Timothy Q. Vu & Taylor F. Gunnels & Vivian T. Hu & Peilong Lu & David Baker & Neha P. Kamat, 2024. "Hydrophobic mismatch drives self-organization of designer proteins into synthetic membranes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangang Pan & Jingyu Zhan & Yining Jiang & Di Xia & Simon Scheuring, 2023. "A concerted ATPase cycle of the protein transporter AAA-ATPase Bcs1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Alma P. Perrino & Atsushi Miyagi & Simon Scheuring, 2021. "Single molecule kinetics of bacteriorhodopsin by HS-AFM," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Carlos A. Z. Bassetto & Juergen Pfeffermann & Rohit Yadav & Simon Strassgschwandtner & Toma Glasnov & Francisco Bezanilla & Peter Pohl, 2024. "Photolipid excitation triggers depolarizing optocapacitive currents and action potentials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Raluca Groza & Kita Valerie Schmidt & Paul Markus Müller & Paolo Ronchi & Claire Schlack-Leigers & Ursula Neu & Dmytro Puchkov & Rumiana Dimova & Claudia Matthaeus & Justin Taraska & Thomas R. Weikl &, 2024. "Adhesion energy controls lipid binding-mediated endocytosis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Alexandre Pozza & François Giraud & Quentin Cece & Marina Casiraghi & Elodie Point & Marjorie Damian & Christel Le Bon & Karine Moncoq & Jean-Louis Banères & Ewen Lescop & Laurent J. Catoire, 2022. "Exploration of the dynamic interplay between lipids and membrane proteins by hydrostatic pressure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Fang Jiao & François Dehez & Tao Ni & Xiulian Yu & Jeremy S. Dittman & Robert Gilbert & Christophe Chipot & Simon Scheuring, 2022. "Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    8. Jienyu Ding & Yun-Tzai Lee & Yuba Bhandari & Charles D. Schwieters & Lixin Fan & Ping Yu & Sergey G. Tarosov & Jason R. Stagno & Buyong Ma & Ruth Nussinov & Alan Rein & Jinwei Zhang & Yun-Xing Wang, 2023. "Visualizing RNA conformational and architectural heterogeneity in solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
    10. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Anne M. Kiirikki & Hanne S. Antila & Lara S. Bort & Pavel Buslaev & Fernando Favela-Rosales & Tiago Mendes Ferreira & Patrick F. J. Fuchs & Rebeca Garcia-Fandino & Ivan Gushchin & Batuhan Kav & Norber, 2024. "Overlay databank unlocks data-driven analyses of biomolecules for all," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Zhongjie Ye & Nicola Galvanetto & Leonardo Puppulin & Simone Pifferi & Holger Flechsig & Melanie Arndt & Cesar Adolfo Sánchez Triviño & Michael Palma & Shifeng Guo & Horst Vogel & Anna Menini & Clemen, 2024. "Structural heterogeneity of the ion and lipid channel TMEM16F," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Eri Takematsu & Miles Massidda & Jeff Auster & Po-Chih Chen & ByungGee Im & Sanjana Srinath & Sophia Canga & Aditya Singh & Marjan Majid & Michael Sherman & Andrew Dunn & Annette Graham & Patricia Mar, 2022. "Transmembrane stem cell factor protein therapeutics enhance revascularization in ischemia without mast cell activation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Tianchi Chen & Cecilia H. Fernández-Espartero & Abigail Illand & Ching-Ting Tsai & Yang Yang & Benjamin Klapholz & Pierre Jouchet & Mélanie Fabre & Olivier Rossier & Bianxiao Cui & Sandrine Lévêque-Fo, 2024. "Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Alexander P. Fellows & Ben John & Martin Wolf & Martin Thämer, 2024. "Spiral packing and chiral selectivity in model membranes probed by phase-resolved sum-frequency generation microscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35202-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.