IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44061-w.html
   My bibliography  Save this article

DNA mechanocapsules for programmable piconewton responsive drug delivery

Author

Listed:
  • Arventh Velusamy

    (Emory University)

  • Radhika Sharma

    (Emory University)

  • Sk Aysha Rashid

    (Emory University)

  • Hiroaki Ogasawara

    (Emory University)

  • Khalid Salaita

    (Emory University
    Georgia Institute of Technology and Emory University)

Abstract

The mechanical dysregulation of cells is associated with a number of disease states, that spans from fibrosis to tumorigenesis. Hence, it is highly desirable to develop strategies to deliver drugs based on the “mechanical phenotype” of a cell. To achieve this goal, we report the development of DNA mechanocapsules (DMC) comprised of DNA tetrahedrons that are force responsive. Modeling shows the trajectory of force-induced DMC rupture and predicts how applied force spatial position and orientation tunes the force-response threshold. DMCs functionalized with adhesion ligands mechanically denature in vitro as a result of cell receptor forces. DMCs are designed to encapsulate macromolecular cargos such as dextran and oligonucleotide drugs with minimal cargo leakage and high nuclease resistance. Force-induced release and uptake of DMC cargo is validated using flow cytometry. Finally, we demonstrate force-induced mRNA knockdown of HIF-1α in a manner that is dependent on the magnitude of cellular traction forces. These results show that DMCs can be effectively used to target biophysical phenotypes which may find useful applications in immunology and cancer biology.

Suggested Citation

  • Arventh Velusamy & Radhika Sharma & Sk Aysha Rashid & Hiroaki Ogasawara & Khalid Salaita, 2024. "DNA mechanocapsules for programmable piconewton responsive drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44061-w
    DOI: 10.1038/s41467-023-44061-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44061-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44061-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pontus Nordenfelt & Hunter L. Elliott & Timothy A. Springer, 2016. "Coordinated integrin activation by actin-dependent force during T-cell migration," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
    2. Yun Zhang & Chenghao Ge & Cheng Zhu & Khalid Salaita, 2014. "DNA-based digital tension probes reveal integrin forces during early cell adhesion," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    3. Ion Andreu & Bryan Falcones & Sebastian Hurst & Nimesh Chahare & Xarxa Quiroga & Anabel-Lise Roux & Zanetta Kechagia & Amy E. M. Beedle & Alberto Elosegui-Artola & Xavier Trepat & Ramon Farré & Timo B, 2021. "The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myung Hyun Jo & Jing Li & Valentin Jaumouillé & Yuxin Hao & Jessica Coppola & Jiabin Yan & Clare M. Waterman & Timothy A. Springer & Taekjip Ha, 2022. "Single-molecule characterization of subtype-specific β1 integrin mechanics," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Jérôme R D Soiné & Christoph A Brand & Jonathan Stricker & Patrick W Oakes & Margaret L Gardel & Ulrich S Schwarz, 2015. "Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-16, March.
    3. Mitchell S. Wang & Yuesong Hu & Elisa E. Sanchez & Xihe Xie & Nathan H. Roy & Miguel Jesus & Benjamin Y. Winer & Elizabeth A. Zale & Weiyang Jin & Chirag Sachar & Joanne H. Lee & Yeonsun Hong & Minsoo, 2022. "Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Yuhang Zhang & Jingyi Du & Xian Liu & Fei Shang & Yunxin Deng & Jiaqing Ye & Yukai Wang & Jie Yan & Hu Chen & Miao Yu & Shimin Le, 2024. "Multi-domain interaction mediated strength-building in human α-actinin dimers unveiled by direct single-molecule quantification," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Markus Haake & Beatrice Haack & Tina Schäfer & Patrick N. Harter & Greta Mattavelli & Patrick Eiring & Neha Vashist & Florian Wedekink & Sabrina Genssler & Birgitt Fischer & Julia Dahlhoff & Fatemeh M, 2023. "Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. A. Mills & N. Aissaoui & D. Maurel & J. Elezgaray & F. Morvan & J. J. Vasseur & E. Margeat & R. B. Quast & J. Lai Kee-Him & N. Saint & C. Benistant & A. Nord & F. Pedaci & G. Bellot, 2022. "A modular spring-loaded actuator for mechanical activation of membrane proteins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Matthew R. Pawlak & Adam T. Smiley & Maria Paz Ramirez & Marcus D. Kelly & Ghaidan A. Shamsan & Sarah M. Anderson & Branden A. Smeester & David A. Largaespada & David J. Odde & Wendy R. Gordon, 2023. "RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44061-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.