IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v9y2024i12d10.1038_s41560-024-01633-4.html
   My bibliography  Save this article

Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol

Author

Listed:
  • Chao Zhan

    (Fritz-Haber Institute of the Max-Planck Society)

  • Federico Dattila

    (The Barcelona Institute of Science and Technology (BIST)
    Politecnico di Torino)

  • Clara Rettenmaier

    (Fritz-Haber Institute of the Max-Planck Society)

  • Antonia Herzog

    (Fritz-Haber Institute of the Max-Planck Society)

  • Matias Herran

    (Fritz-Haber Institute of the Max-Planck Society)

  • Timon Wagner

    (Fritz-Haber Institute of the Max-Planck Society)

  • Fabian Scholten

    (Fritz-Haber Institute of the Max-Planck Society)

  • Arno Bergmann

    (Fritz-Haber Institute of the Max-Planck Society)

  • Núria López

    (The Barcelona Institute of Science and Technology (BIST))

  • Beatriz Roldan Cuenya

    (Fritz-Haber Institute of the Max-Planck Society)

Abstract

Electrochemical reduction of CO2 (CO2RR) to multi-carbon products is a promising technology to store intermittent renewable electricity into high-added-value chemicals and close the carbon cycle. Its industrial scalability requires electrocatalysts to be highly selective to certain products, such as ethylene or ethanol. However, a substantial knowledge gap prevents the design of tailor-made materials, as the properties ruling the catalyst selectivity remain elusive. Here we combined in situ surface-enhanced Raman spectroscopy and density functional theory on Cu electrocatalysts to unveil the reaction scheme for CO2RR to C2+ products. Ethylene generation occurs when *OC–CO(H) dimers form via CO coupling on undercoordinated Cu sites. The ethanol route opens up only in the presence of highly compressed and distorted Cu domains with deep s-band states via the crucial intermediate *OCHCH2. By identifying and tracking the critical intermediates and specific active sites, our work provides guidelines to selectively decouple ethylene and ethanol production on rationally designed catalysts.

Suggested Citation

  • Chao Zhan & Federico Dattila & Clara Rettenmaier & Antonia Herzog & Matias Herran & Timon Wagner & Fabian Scholten & Arno Bergmann & Núria López & Beatriz Roldan Cuenya, 2024. "Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol," Nature Energy, Nature, vol. 9(12), pages 1485-1496, December.
  • Handle: RePEc:nat:natene:v:9:y:2024:i:12:d:10.1038_s41560-024-01633-4
    DOI: 10.1038/s41560-024-01633-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-024-01633-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-024-01633-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosa M. Arán-Ais & Fabian Scholten & Sebastian Kunze & Rubén Rizo & Beatriz Roldan Cuenya, 2020. "The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction," Nature Energy, Nature, vol. 5(4), pages 317-325, April.
    2. Christina W. Li & Jim Ciston & Matthew W. Kanan, 2014. "Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper," Nature, Nature, vol. 508(7497), pages 504-507, April.
    3. Yao Yang & Sheena Louisia & Sunmoon Yu & Jianbo Jin & Inwhan Roh & Chubai Chen & Maria V. Fonseca Guzman & Julian Feijóo & Peng-Cheng Chen & Hongsen Wang & Christopher J. Pollock & Xin Huang & Yu-Tsun, 2023. "Operando studies reveal active Cu nanograins for CO2 electroreduction," Nature, Nature, vol. 614(7947), pages 262-269, February.
    4. Yuvraj Y. Birdja & Elena Pérez-Gallent & Marta C. Figueiredo & Adrien J. Göttle & Federico Calle-Vallejo & Marc T. M. Koper, 2019. "Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels," Nature Energy, Nature, vol. 4(9), pages 732-745, September.
    5. Hong-Jie Peng & Michael T. Tang & Joakim Halldin Stenlid & Xinyan Liu & Frank Abild-Pedersen, 2022. "Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiyuan Liu & Hao Shen & Zhiyi Sun & Qiang Zhou & Guoqiang Liu & Zhongti Sun & Wenxing Chen & Xin Gao & Pengwan Chen, 2025. "Transient pulsed discharge preparation of graphene aerogel supports asymmetric Cu cluster catalysts promote CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiateng & Xu, Le & Shen, Boxiong, 2024. "Recent advances in tandem electrocatalysis of carbon dioxide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Shikai Liu & Yuheng Li & Di Wang & Shibo Xi & Haoming Xu & Yulin Wang & Xinzhe Li & Wenjie Zang & Weidong Liu & Mengyao Su & Katherine Yan & Adam C. Nielander & Andrew B. Wong & Jiong Lu & Thomas F. J, 2024. "Alkali cation-induced cathodic corrosion in Cu electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Philipp Grosse & Aram Yoon & Clara Rettenmaier & Antonia Herzog & See Wee Chee & Beatriz Roldan Cuenya, 2021. "Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Qiong Lei & Liang Huang & Jun Yin & Bambar Davaasuren & Youyou Yuan & Xinglong Dong & Zhi-Peng Wu & Xiaoqian Wang & Ke Xin Yao & Xu Lu & Yu Han, 2022. "Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Gong Zhang & Tuo Wang & Mengmeng Zhang & Lulu Li & Dongfang Cheng & Shiyu Zhen & Yongtao Wang & Jian Qin & Zhi-Jian Zhao & Jinlong Gong, 2022. "Selective CO2 electroreduction to methanol via enhanced oxygen bonding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Ruiz-López, Estela & Gandara-Loe, Jesús & Baena-Moreno, Francisco & Reina, Tomas Ramirez & Odriozola, José Antonio, 2022. "Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Hong-Jie Peng & Michael T. Tang & Joakim Halldin Stenlid & Xinyan Liu & Frank Abild-Pedersen, 2022. "Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Jing Li & Haocheng Xiong & Xiaozhi Liu & Donghuan Wu & Dong Su & Bingjun Xu & Qi Lu, 2023. "Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. J. Ruiter & V. R. M. Benning & S. Yang & B. J. Hartigh & H. Wang & P. T. Prins & J. M. Dorresteijn & J. C. L. Janssens & G. Manna & A. V. Petukhov & B. M. Weckhuysen & F. T. Rabouw & W. Stam, 2025. "Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO2 reduction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Kaiyuan Liu & Hao Shen & Zhiyi Sun & Qiang Zhou & Guoqiang Liu & Zhongti Sun & Wenxing Chen & Xin Gao & Pengwan Chen, 2025. "Transient pulsed discharge preparation of graphene aerogel supports asymmetric Cu cluster catalysts promote CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Ke Ye & Tian-Wen Jiang & Hyun Dong Jung & Peng Shen & So Min Jang & Zhe Weng & Seoin Back & Wen-Bin Cai & Kun Jiang, 2024. "Molecular level insights on the pulsed electrochemical CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Shifu Wang & Fuhua Li & Jian Zhao & Yaqiong Zeng & Yifan Li & Zih-Yi Lin & Tsung-Ju Lee & Shuhui Liu & Xinyi Ren & Weijue Wang & Yusen Chen & Sung-Fu Hung & Ying-Rui Lu & Yi Cui & Xiaofeng Yang & Xuni, 2024. "Manipulating C-C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Marvin L. Frisch & Longfei Wu & Clément Atlan & Zhe Ren & Madeleine Han & Rémi Tucoulou & Liang Liang & Jiasheng Lu & An Guo & Hong Nhan Nong & Aleks Arinchtein & Michael Sprung & Julie Villanova & Ma, 2023. "Unraveling the synergistic effects of Cu-Ag tandem catalysts during electrochemical CO2 reduction using nanofocused X-ray probes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Meng He & Yongmeng Wu & Rui Li & Yuting Wang & Cuibo Liu & Bin Zhang, 2023. "Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Darband, Ghasem Barati & Aliofkhazraei, Mahmood & Shanmugam, Sangaraju, 2019. "Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:9:y:2024:i:12:d:10.1038_s41560-024-01633-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.