IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38928-1.html
   My bibliography  Save this article

Revealing CO2 dissociation pathways at vicinal copper (997) interfaces

Author

Listed:
  • Jeongjin Kim

    (Korea Advanced Institute of Science and Technology (KAIST)
    Brookhaven National Laboratory)

  • Youngseok Yu

    (Gwangju Institute of Science and Technology (GIST)
    GIST)

  • Tae Won Go

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jean-Jacques Gallet

    (CNRS, Sorbonne Université
    Synchrotron SOLEIL)

  • Fabrice Bournel

    (CNRS, Sorbonne Université
    Synchrotron SOLEIL)

  • Bongjin Simon Mun

    (Gwangju Institute of Science and Technology (GIST)
    GIST)

  • Jeong Young Park

    (Korea Advanced Institute of Science and Technology (KAIST))

Abstract

Size- and shape-tailored copper (Cu) nanocrystals can offer vicinal planes for facile carbon dioxide (CO2) activation. Despite extensive reactivity benchmarks, a correlation between CO2 conversion and morphology structure has not yet been established at vicinal Cu interfaces. Herein, ambient pressure scanning tunneling microscopy reveals step-broken Cu nanocluster evolutions on the Cu(997) surface under 1 mbar CO2(g). The CO2 dissociation reaction produces carbon monoxide (CO) adsorbate and atomic oxygen (O) at Cu step-edges, inducing complicated restructuring of the Cu atoms to compensate for increased surface chemical potential energy at ambient pressure. The CO molecules bound at under-coordinated Cu atoms contribute to the reversible Cu clustering with the pressure gap effect, whereas the dissociated oxygen leads to irreversible Cu faceting geometries. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy identifies the chemical binding energy changes in CO-Cu complexes, which proves the characterized real-space evidence for the step-broken Cu nanoclusters under CO(g) environments. Our in situ surface observations provide a more realistic insight into Cu nanocatalyst designs for efficient CO2 conversion to renewable energy sources during C1 chemical reactions.

Suggested Citation

  • Jeongjin Kim & Youngseok Yu & Tae Won Go & Jean-Jacques Gallet & Fabrice Bournel & Bongjin Simon Mun & Jeong Young Park, 2023. "Revealing CO2 dissociation pathways at vicinal copper (997) interfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38928-1
    DOI: 10.1038/s41467-023-38928-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38928-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38928-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa M. Arán-Ais & Fabian Scholten & Sebastian Kunze & Rubén Rizo & Beatriz Roldan Cuenya, 2020. "The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction," Nature Energy, Nature, vol. 5(4), pages 317-325, April.
    2. Yifan Ye & Hao Yang & Jin Qian & Hongyang Su & Kyung-Jae Lee & Tao Cheng & Hai Xiao & Junko Yano & William A. Goddard & Ethan J. Crumlin, 2019. "Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Feng Lin & Isaac M. Markus & Dennis Nordlund & Tsu-Chien Weng & Mark D. Asta & Huolin L. Xin & Marca M. Doeff, 2014. "Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    4. Andrew L. Walter & Frederik Schiller & Martina Corso & Lindsay R. Merte & Florian Bertram & Jorge Lobo-Checa & Mikhail Shipilin & Johan Gustafson & Edvin Lundgren & Anton X. Brión-Ríos & Pepa Cabrera-, 2015. "X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, ShiYong & Liu, Hua & Hafeez, Muhammad & Wang, Xiaofeng & Fahad, Shah & Yue, Xiao-Guang, 2023. "Testing the resource curse hypothesis: The dynamic roles of institutional quality, inflation and growth for Dragon," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinlei Shi & Xiangqian Fan & Yinbo Zhu & Yang Liu & Peiqi Wu & Renhui Jiang & Bao Wu & Heng-An Wu & He Zheng & Jianbo Wang & Xinyi Ji & Yongsheng Chen & Jiajie Liang, 2022. "Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Marvin L. Frisch & Longfei Wu & Clément Atlan & Zhe Ren & Madeleine Han & Rémi Tucoulou & Liang Liang & Jiasheng Lu & An Guo & Hong Nhan Nong & Aleks Arinchtein & Michael Sprung & Julie Villanova & Ma, 2023. "Unraveling the synergistic effects of Cu-Ag tandem catalysts during electrochemical CO2 reduction using nanofocused X-ray probes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Meng He & Yongmeng Wu & Rui Li & Yuting Wang & Cuibo Liu & Bin Zhang, 2023. "Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yinchao Yao & Tong Shi & Wenxing Chen & Jiehua Wu & Yunying Fan & Yichun Liu & Liang Cao & Zhuo Chen, 2024. "A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Ke Chen & Pallab Barai & Ozgenur Kahvecioglu & Lijun Wu & Krzysztof Z. Pupek & Mingyuan Ge & Lu Ma & Steven N. Ehrlich & Hui Zhong & Yimei Zhu & Venkat Srinivasan & Jianming Bai & Feng Wang, 2024. "Cobalt-free composite-structured cathodes with lithium-stoichiometry control for sustainable lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jongyoun Kim & Taemin Lee & Hyun Dong Jung & Minkyoung Kim & Jungsu Eo & Byeongjae Kang & Hyeonwoo Jung & Jaehyoung Park & Daewon Bae & Yujin Lee & Sojung Park & Wooyul Kim & Seoin Back & Youngu Lee &, 2024. "Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Ermanno Miele & Wesley M. Dose & Ilya Manyakin & Michael H. Frosz & Zachary Ruff & Michael F. L. Volder & Clare P. Grey & Jeremy J. Baumberg & Tijmen G. Euser, 2022. "Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Yanmei Huang & Caihong He & Chuanqi Cheng & Shuhe Han & Meng He & Yuting Wang & Nannan Meng & Bin Zhang & Qipeng Lu & Yifu Yu, 2023. "Pulsed electroreduction of low-concentration nitrate to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Xing Ou & Tongchao Liu & Wentao Zhong & Xinming Fan & Xueyi Guo & Xiaojing Huang & Liang Cao & Junhua Hu & Bao Zhang & Yong S. Chu & Guorong Hu & Zhang Lin & Mouad Dahbi & Jones Alami & Khalil Amine &, 2022. "Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Zhang, Xuewei & Zhou, Wei & Huang, Yuming & Ding, Yani & Li, Junfeng & Xie, Liang & Yu, Yang & Chen, Jiaxiang & Sun, Miaoting & Meng, Xiaoxiao, 2024. "Enhanced hydrogen production enabled by pulsed potential coupled sulfite electrooxidation water electrolysis system," Renewable Energy, Elsevier, vol. 227(C).
    17. Shikai Liu & Yuheng Li & Di Wang & Shibo Xi & Haoming Xu & Yulin Wang & Xinzhe Li & Wenjie Zang & Weidong Liu & Mengyao Su & Katherine Yan & Adam C. Nielander & Andrew B. Wong & Jiong Lu & Thomas F. J, 2024. "Alkali cation-induced cathodic corrosion in Cu electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Gong Zhang & Tuo Wang & Mengmeng Zhang & Lulu Li & Dongfang Cheng & Shiyu Zhen & Yongtao Wang & Jian Qin & Zhi-Jian Zhao & Jinlong Gong, 2022. "Selective CO2 electroreduction to methanol via enhanced oxygen bonding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Wenxiang Zhu & Xiangcong Song & Fan Liao & Hui Huang & Qi Shao & Kun Feng & Yunjie Zhou & Mengjie Ma & Jie Wu & Hao Yang & Haiwei Yang & Meng Wang & Jie Shi & Jun Zhong & Tao Cheng & Mingwang Shao & Y, 2023. "Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38928-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.