IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i4d10.1038_s41560-020-0594-9.html
   My bibliography  Save this article

The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction

Author

Listed:
  • Rosa M. Arán-Ais

    (Fritz-Haber-Institute of the Max-Planck Society)

  • Fabian Scholten

    (Fritz-Haber-Institute of the Max-Planck Society)

  • Sebastian Kunze

    (Fritz-Haber-Institute of the Max-Planck Society)

  • Rubén Rizo

    (Fritz-Haber-Institute of the Max-Planck Society)

  • Beatriz Roldan Cuenya

    (Fritz-Haber-Institute of the Max-Planck Society)

Abstract

The efficient electrochemical conversion of CO2 provides a route to fuels and feedstocks. Copper catalysts are well-known to be selective to multicarbon products, although the role played by the surface architecture and the presence of oxides is not fully understood. Here we report improved efficiency towards ethanol by tuning the morphology and oxidation state of the copper catalysts through pulsed CO2 electrolysis. We establish a correlation between the enhanced production of C2+ products (76% ethylene, ethanol and n-propanol at −1.0 V versus the reversible hydrogen electrode) and the presence of (100) terraces, Cu2O and defects on Cu(100). We monitored the evolution of the catalyst morphology by analysis of cyclic voltammetry curves and ex situ atomic force microscopy data, whereas the chemical state of the surface was examined via quasi in situ X-ray photoelectron spectroscopy. We show that the continuous regeneration of defects and Cu(i) species synergistically favours C–C coupling pathways.

Suggested Citation

  • Rosa M. Arán-Ais & Fabian Scholten & Sebastian Kunze & Rubén Rizo & Beatriz Roldan Cuenya, 2020. "The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction," Nature Energy, Nature, vol. 5(4), pages 317-325, April.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:4:d:10.1038_s41560-020-0594-9
    DOI: 10.1038/s41560-020-0594-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0594-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0594-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonia Herzog & Mauricio Lopez Luna & Hyo Sang Jeon & Clara Rettenmaier & Philipp Grosse & Arno Bergmann & Beatriz Roldan Cuenya, 2024. "Operando Raman spectroscopy uncovers hydroxide and CO species enhance ethanol selectivity during pulsed CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Zhang, Xuewei & Zhou, Wei & Huang, Yuming & Ding, Yani & Li, Junfeng & Xie, Liang & Yu, Yang & Chen, Jiaxiang & Sun, Miaoting & Meng, Xiaoxiao, 2024. "Enhanced hydrogen production enabled by pulsed potential coupled sulfite electrooxidation water electrolysis system," Renewable Energy, Elsevier, vol. 227(C).
    4. Marvin L. Frisch & Longfei Wu & Clément Atlan & Zhe Ren & Madeleine Han & Rémi Tucoulou & Liang Liang & Jiasheng Lu & An Guo & Hong Nhan Nong & Aleks Arinchtein & Michael Sprung & Julie Villanova & Ma, 2023. "Unraveling the synergistic effects of Cu-Ag tandem catalysts during electrochemical CO2 reduction using nanofocused X-ray probes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Jeongjin Kim & Youngseok Yu & Tae Won Go & Jean-Jacques Gallet & Fabrice Bournel & Bongjin Simon Mun & Jeong Young Park, 2023. "Revealing CO2 dissociation pathways at vicinal copper (997) interfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Shikai Liu & Yuheng Li & Di Wang & Shibo Xi & Haoming Xu & Yulin Wang & Xinzhe Li & Wenjie Zang & Weidong Liu & Mengyao Su & Katherine Yan & Adam C. Nielander & Andrew B. Wong & Jiong Lu & Thomas F. J, 2024. "Alkali cation-induced cathodic corrosion in Cu electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Carina Yi Jing Lim & Meltem Yilmaz & Juan Manuel Arce-Ramos & Albertus D. Handoko & Wei Jie Teh & Yuangang Zheng & Zi Hui Jonathan Khoo & Ming Lin & Mark Isaacs & Teck Lip Dexter Tam & Yang Bai & Chee, 2023. "Surface charge as activity descriptors for electrochemical CO2 reduction to multi-carbon products on organic-functionalised Cu," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Shijia Mu & Honglei Lu & Qianbao Wu & Lei Li & Ruijuan Zhao & Chang Long & Chunhua Cui, 2022. "Hydroxyl radicals dominate reoxidation of oxide-derived Cu in electrochemical CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Chen, Jiateng & Xu, Le & Shen, Boxiong, 2024. "Recent advances in tandem electrocatalysis of carbon dioxide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Philipp Grosse & Aram Yoon & Clara Rettenmaier & Antonia Herzog & See Wee Chee & Beatriz Roldan Cuenya, 2021. "Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Meng He & Yongmeng Wu & Rui Li & Yuting Wang & Cuibo Liu & Bin Zhang, 2023. "Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Erfan Shirzadi & Qiu Jin & Ali Shayesteh Zeraati & Roham Dorakhan & Tiago J. Goncalves & Jehad Abed & Byoung-Hoon Lee & Armin Sedighian Rasouli & Joshua Wicks & Jinqiang Zhang & Pengfei Ou & Victor Bo, 2024. "Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Lei Chen & Junmei Chen & Weiwei Fu & Jiayi Chen & Di Wang & Yukun Xiao & Shibo Xi & Yongfei Ji & Lei Wang, 2024. "Energy-efficient CO(2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Yanmei Huang & Caihong He & Chuanqi Cheng & Shuhe Han & Meng He & Yuting Wang & Nannan Meng & Bin Zhang & Qipeng Lu & Yifu Yu, 2023. "Pulsed electroreduction of low-concentration nitrate to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Yinchao Yao & Tong Shi & Wenxing Chen & Jiehua Wu & Yunying Fan & Yichun Liu & Liang Cao & Zhuo Chen, 2024. "A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    21. Gong Zhang & Tuo Wang & Mengmeng Zhang & Lulu Li & Dongfang Cheng & Shiyu Zhen & Yongtao Wang & Jian Qin & Zhi-Jian Zhao & Jinlong Gong, 2022. "Selective CO2 electroreduction to methanol via enhanced oxygen bonding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    22. Hong-Jie Peng & Michael T. Tang & Joakim Halldin Stenlid & Xinyan Liu & Frank Abild-Pedersen, 2022. "Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:4:d:10.1038_s41560-020-0594-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.