IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52733-4.html
   My bibliography  Save this article

Time-dependent neural arbitration between cue associative and episodic fear memories

Author

Listed:
  • Aurelio Cortese

    (ATR Computational Neuroscience Laboratories)

  • Ryu Ohata

    (The University of Tokyo)

  • Maria Alemany-González

    (Inc.)

  • Norimichi Kitagawa

    (Yoshika Institute of Psychology
    Ritsumeikan University)

  • Hiroshi Imamizu

    (The University of Tokyo
    ATR Cognitive Mechanisms Laboratories
    The University of Tokyo)

  • Ai Koizumi

    (Inc.)

Abstract

After traumatic events, simple cue-threat associative memories strengthen while episodic memories become incoherent. However, how the brain prioritises cue associations over episodic coding of traumatic events remains unclear. Here, we developed an original episodic threat conditioning paradigm in which participants concurrently form two memory representations: cue associations and episodic cue sequence. We discovered that these two distinct memories compete for physiological fear expression, reorganising overnight from an overgeneralised cue-based to a precise sequence-based expression. With multivariate fMRI, we track inter-area communication of the memory representations to reveal that a rebalancing between hippocampal- and prefrontal control of the fear regulatory circuit governs this memory maturation. Critically, this overnight re-organisation is altered with heightened trait anxiety. Together, we show the brain prioritises generalisable associative memories under recent traumatic stress but resorts to selective episodic memories 24 h later. Time-dependent memory competition may provide a unifying account for memory dysfunctions in post-traumatic stress disorders.

Suggested Citation

  • Aurelio Cortese & Ryu Ohata & Maria Alemany-González & Norimichi Kitagawa & Hiroshi Imamizu & Ai Koizumi, 2024. "Time-dependent neural arbitration between cue associative and episodic fear memories," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52733-4
    DOI: 10.1038/s41467-024-52733-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52733-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52733-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicola S. Clayton & Anthony Dickinson, 1998. "Episodic-like memory during cache recovery by scrub jays," Nature, Nature, vol. 395(6699), pages 272-274, September.
    2. Ben Seymour & John P. O'Doherty & Peter Dayan & Martin Koltzenburg & Anthony K. Jones & Raymond J. Dolan & Karl J. Friston & Richard S. Frackowiak, 2004. "Temporal difference models describe higher-order learning in humans," Nature, Nature, vol. 429(6992), pages 664-667, June.
    3. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Erin Kendall Braun & G. Elliott Wimmer & Daphna Shohamy, 2018. "Retroactive and graded prioritization of memory by reward," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Aurelio Cortese & Hakwan Lau & Mitsuo Kawato, 2020. "Unconscious reinforcement learning of hidden brain states supported by confidence," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. David J. Foster & Matthew A. Wilson, 2006. "Reverse replay of behavioural sequences in hippocampal place cells during the awake state," Nature, Nature, vol. 440(7084), pages 680-683, March.
    7. Joseph E. Dunsmoor & Marijn C. W. Kroes & Caroline M. Moscatelli & Michael D. Evans & Lila Davachi & Elizabeth A. Phelps, 2018. "Event segmentation protects emotional memories from competing experiences encoded close in time," Nature Human Behaviour, Nature, vol. 2(4), pages 291-299, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. J Matthew Mahoney & Ali S Titiz & Amanda E Hernan & Rod C Scott, 2016. "Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
    3. Marusha Dekleva & Valérie Dufour & Han de Vries & Berry M Spruijt & Elisabeth H M Sterck, 2011. "Chimpanzees (Pan troglodytes) Fail a What-Where-When Task but Find Rewards by Using a Location-Based Association Strategy," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    4. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    5. Zixuan Tang & Chen Qu & Yang Hu & Julien Benistant & Frederic Moisan & Edmund Derrington & Jean-Claude Dreher, 2023. "Strengths of social ties modulate brain computations for third-party punishment," Post-Print hal-04325737, HAL.
    6. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Usman Farooq & George Dragoi, 2024. "Experience of Euclidean geometry sculpts the development and dynamics of rodent hippocampal sequential cell assemblies," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    9. Ruijie Li & Junjie Huang & Longhui Li & Zhikai Zhao & Susu Liang & Shanshan Liang & Meng Wang & Xiang Liao & Jing Lyu & Zhenqiao Zhou & Sibo Wang & Wenjun Jin & Haiyang Chen & Damaris Holder & Hongban, 2023. "Holistic bursting cells store long-term memory in auditory cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Hytönen, Kaisa & Baltussen, Guido & van den Assem, Martijn J. & Klucharev, Vasily & Sanfey, Alan G. & Smidts, Ale, 2014. "Path dependence in risky choice: Affective and deliberative processes in brain and behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 566-581.
    12. Engelmann, Jan B. & Damaraju, Eswar & Padmala, Srikanth & Pessoa, Luiz, 2009. "Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects," MPRA Paper 52133, University Library of Munich, Germany.
    13. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    15. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    16. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Wang, Xu-Wen & Nie, Sen & Jiang, Luo-Luo & Wang, Bing-Hong & Chen, Shi-Ming, 2017. "Role of delay-based reward in the spatial cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 153-158.
    18. Zhewei Zhang & Yuji K. Takahashi & Marlian Montesinos-Cartegena & Thorsten Kahnt & Angela J. Langdon & Geoffrey Schoenbaum, 2024. "Expectancy-related changes in firing of dopamine neurons depend on hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Yves Arrighi & David Crainich & Véronique Flambard & Sophie Massin, 2022. "Personalized information and willingness to pay for non-financial risk prevention: An experiment," Journal of Risk and Uncertainty, Springer, vol. 65(1), pages 57-82, August.
    20. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52733-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.