IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41024-z.html
   My bibliography  Save this article

Locating causal hubs of memory consolidation in spontaneous brain network in male mice

Author

Listed:
  • Zengmin Li

    (The University of Queensland)

  • Dilsher Athwal

    (The University of Queensland)

  • Hsu-Lei Lee

    (The University of Queensland)

  • Pankaj Sah

    (The University of Queensland
    Southern University of Science and Technology)

  • Patricio Opazo

    (The University of Queensland
    The University of Queensland
    The University of Edinburgh)

  • Kai-Hsiang Chuang

    (The University of Queensland
    The University of Queensland
    Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology)

Abstract

Memory consolidation after learning involves spontaneous, brain-wide network reorganization during rest and sleep, but how this is achieved is still poorly understood. Current theory suggests that the hippocampus is pivotal for this reshaping of connectivity. Using fMRI in male mice, we identify that a different set of spontaneous networks and their hubs are instrumental in consolidating memory during post-learning rest. We found that two types of spatial memory training invoke distinct functional connections, but that a network of the sensory cortex and subcortical areas is common for both tasks. Furthermore, learning increased brain-wide network integration, with the prefrontal, striatal and thalamic areas being influential for this network-level reconfiguration. Chemogenetic suppression of each hub identified after learning resulted in retrograde amnesia, confirming the behavioral significance. These results demonstrate the causal and functional roles of resting-state network hubs in memory consolidation and suggest that a distributed network beyond the hippocampus subserves this process.

Suggested Citation

  • Zengmin Li & Dilsher Athwal & Hsu-Lei Lee & Pankaj Sah & Patricio Opazo & Kai-Hsiang Chuang, 2023. "Locating causal hubs of memory consolidation in spontaneous brain network in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41024-z
    DOI: 10.1038/s41467-023-41024-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41024-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41024-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anna C. Schapiro & Elizabeth A. McDevitt & Timothy T. Rogers & Sara C. Mednick & Kenneth A. Norman, 2018. "Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Karolina Finc & Kamil Bonna & Xiaosong He & David M. Lydon-Staley & Simone Kühn & Włodzisław Duch & Danielle S. Bassett, 2020. "Dynamic reconfiguration of functional brain networks during working memory training," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    4. Ananya Chowdhury & Pico Caroni, 2018. "Time units for learning involving maintenance of system-wide cFos expression in neuronal assemblies," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Karolina Finc & Kamil Bonna & Xiaosong He & David M. Lydon-Staley & Simone Kühn & Włodzisław Duch & Danielle S. Bassett, 2020. "Author Correction: Dynamic reconfiguration of functional brain networks during working memory training," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    6. Paul W. Frankland & Cara O'Brien & Masuo Ohno & Alfredo Kirkwood & Alcino J. Silva, 2001. "α-CaMKII-dependent plasticity in the cortex is required for permanent memory," Nature, Nature, vol. 411(6835), pages 309-313, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Jones & V. Lowe & J. Graff-Radford & H. Botha & L. Barnard & D. Wiepert & M. C. Murphy & M. Murray & M. Senjem & J. Gunter & H. Wiste & B. Boeve & D. Knopman & R. Petersen & C. Jack, 2022. "A computational model of neurodegeneration in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Ruijie Li & Junjie Huang & Longhui Li & Zhikai Zhao & Susu Liang & Shanshan Liang & Meng Wang & Xiang Liao & Jing Lyu & Zhenqiao Zhou & Sibo Wang & Wenjun Jin & Haiyang Chen & Damaris Holder & Hongban, 2023. "Holistic bursting cells store long-term memory in auditory cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Gianluca Milano & Alessandro Cultrera & Luca Boarino & Luca Callegaro & Carlo Ricciardi, 2023. "Tomography of memory engrams in self-organizing nanowire connectomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Xunda Wang & Alex T. L. Leong & Shawn Z. K. Tan & Eddie C. Wong & Yilong Liu & Lee-Wei Lim & Ed X. Wu, 2023. "Functional MRI reveals brain-wide actions of thalamically-initiated oscillatory activities on associative memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Stephanie L. Grella & Amanda H. Fortin & Evan Ruesch & John H. Bladon & Leanna F. Reynolds & Abby Gross & Monika Shpokayte & Christine Cincotta & Yosif Zaki & Steve Ramirez, 2022. "Reactivating hippocampal-mediated memories during reconsolidation to disrupt fear," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41024-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.