IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52731-6.html
   My bibliography  Save this article

A climate change signal in the tropical Pacific emerges from decadal variability

Author

Listed:
  • Feng Jiang

    (Columbia University)

  • Richard Seager

    (Columbia University)

  • Mark A. Cane

    (Columbia University)

Abstract

The eastern tropical Pacific has defied the global warming trend. There has been a debate about whether this observed trend is forced or natural (i.e., the Interdecadal Pacific Oscillation; IPO) and this study shows that there are two patterns, one that oscillates along with the IPO, and one that is emerging since the mid-1950s, herein called the Pacific Climate Change (PCC) pattern. Here we show these have distinctive and distinguishable atmosphere-ocean signatures. While the IPO features a meridionally broad wedge-shaped SST pattern, the PCC pattern is marked by a narrow equatorial cooling band. These different SST patterns are related to distinct wind-driven ocean dynamical processes. We further show that the recent trends during the satellite era are a combination of IPO and PCC. Our findings set a path to distinguish climate change signals from internal variability through the underlying dynamics of each.

Suggested Citation

  • Feng Jiang & Richard Seager & Mark A. Cane, 2024. "A climate change signal in the tropical Pacific emerges from decadal variability," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52731-6
    DOI: 10.1038/s41467-024-52731-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52731-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52731-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerald A. Meehl & Haiyan Teng & Julie M. Arblaster, 2014. "Climate model simulations of the observed early-2000s hiatus of global warming," Nature Climate Change, Nature, vol. 4(10), pages 898-902, October.
    2. Chengfei He & Amy C. Clement & Sydney M. Kramer & Mark A. Cane & Jeremy M. Klavans & Tyler M. Fenske & Lisa N. Murphy, 2023. "Tropical Atlantic multidecadal variability is dominated by external forcing," Nature, Nature, vol. 622(7983), pages 521-527, October.
    3. Masahiro Watanabe & Jean-Louis Dufresne & Yu Kosaka & Thorsten Mauritsen & Hiroaki Tatebe, 2021. "Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient," Nature Climate Change, Nature, vol. 11(1), pages 33-37, January.
    4. Richard Seager & Mark Cane & Naomi Henderson & Dong-Eun Lee & Ryan Abernathey & Honghai Zhang, 2019. "Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases," Nature Climate Change, Nature, vol. 9(7), pages 517-522, July.
    5. Shayne McGregor & Axel Timmermann & Malte F. Stuecker & Matthew H. England & Mark Merrifield & Fei-Fei Jin & Yoshimitsu Chikamoto, 2014. "Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming," Nature Climate Change, Nature, vol. 4(10), pages 888-892, October.
    6. Gerald A. Meehl & Aixue Hu & Benjamin D. Santer & Shang-Ping Xie, 2016. "Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends," Nature Climate Change, Nature, vol. 6(11), pages 1005-1008, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    2. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    3. Tongtong Xu & Matthew Newman & Antonietta Capotondi & Samantha Stevenson & Emanuele Di Lorenzo & Michael A. Alexander, 2022. "An increase in marine heatwaves without significant changes in surface ocean temperature variability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Tao Geng & Wenju Cai & Lixin Wu & Agus Santoso & Guojian Wang & Zhao Jing & Bolan Gan & Yun Yang & Shujun Li & Shengpeng Wang & Zhaohui Chen & Michael J. McPhaden, 2022. "Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Savin S. Chand & Kevin J. E. Walsh & Suzana J. Camargo & James P. Kossin & Kevin J. Tory & Michael F. Wehner & Johnny C. L. Chan & Philip J. Klotzbach & Andrew J. Dowdy & Samuel S. Bell & Hamish A. Ra, 2022. "Declining tropical cyclone frequency under global warming," Nature Climate Change, Nature, vol. 12(7), pages 655-661, July.
    6. Chin-Hsien Cheng & Simon A. T. Redfern, 2022. "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Christine M. Albano & Maureen I. McCarthy & Michael D. Dettinger & Stephanie A. McAfee, 2021. "Techniques for constructing climate scenarios for stress test applications," Climatic Change, Springer, vol. 164(3), pages 1-25, February.
    8. Omid Alizadeh, 2022. "Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation," Climatic Change, Springer, vol. 174(3), pages 1-15, October.
    9. Young, Peter C., 2018. "Data-based mechanistic modelling and forecasting globally averaged surface temperature," International Journal of Forecasting, Elsevier, vol. 34(2), pages 314-335.
    10. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Gan Zhang, 2023. "Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Soledad Collazo & Mariana Barrucand & Matilde Rusticucci, 2023. "Hot and dry compound events in South America: present climate and future projections, and their association with the Pacific Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 299-323, October.
    13. Shuo Fu & Shineng Hu & Xiao-Tong Zheng & Kay McMonigal & Sarah Larson & Yiqun Tian, 2024. "Historical changes in wind-driven ocean circulation drive pattern of Pacific warming," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52731-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.