A climate change signal in the tropical Pacific emerges from decadal variability
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-52731-6
Download full text from publisher
References listed on IDEAS
- Gerald A. Meehl & Haiyan Teng & Julie M. Arblaster, 2014. "Climate model simulations of the observed early-2000s hiatus of global warming," Nature Climate Change, Nature, vol. 4(10), pages 898-902, October.
- Chengfei He & Amy C. Clement & Sydney M. Kramer & Mark A. Cane & Jeremy M. Klavans & Tyler M. Fenske & Lisa N. Murphy, 2023. "Tropical Atlantic multidecadal variability is dominated by external forcing," Nature, Nature, vol. 622(7983), pages 521-527, October.
- Masahiro Watanabe & Jean-Louis Dufresne & Yu Kosaka & Thorsten Mauritsen & Hiroaki Tatebe, 2021. "Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient," Nature Climate Change, Nature, vol. 11(1), pages 33-37, January.
- Richard Seager & Mark Cane & Naomi Henderson & Dong-Eun Lee & Ryan Abernathey & Honghai Zhang, 2019. "Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases," Nature Climate Change, Nature, vol. 9(7), pages 517-522, July.
- Shayne McGregor & Axel Timmermann & Malte F. Stuecker & Matthew H. England & Mark Merrifield & Fei-Fei Jin & Yoshimitsu Chikamoto, 2014. "Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming," Nature Climate Change, Nature, vol. 4(10), pages 888-892, October.
- Gerald A. Meehl & Aixue Hu & Benjamin D. Santer & Shang-Ping Xie, 2016. "Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends," Nature Climate Change, Nature, vol. 6(11), pages 1005-1008, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
- Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
- Tongtong Xu & Matthew Newman & Antonietta Capotondi & Samantha Stevenson & Emanuele Di Lorenzo & Michael A. Alexander, 2022. "An increase in marine heatwaves without significant changes in surface ocean temperature variability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Tao Geng & Wenju Cai & Lixin Wu & Agus Santoso & Guojian Wang & Zhao Jing & Bolan Gan & Yun Yang & Shujun Li & Shengpeng Wang & Zhaohui Chen & Michael J. McPhaden, 2022. "Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Savin S. Chand & Kevin J. E. Walsh & Suzana J. Camargo & James P. Kossin & Kevin J. Tory & Michael F. Wehner & Johnny C. L. Chan & Philip J. Klotzbach & Andrew J. Dowdy & Samuel S. Bell & Hamish A. Ra, 2022. "Declining tropical cyclone frequency under global warming," Nature Climate Change, Nature, vol. 12(7), pages 655-661, July.
- Chin-Hsien Cheng & Simon A. T. Redfern, 2022. "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Christine M. Albano & Maureen I. McCarthy & Michael D. Dettinger & Stephanie A. McAfee, 2021. "Techniques for constructing climate scenarios for stress test applications," Climatic Change, Springer, vol. 164(3), pages 1-25, February.
- Omid Alizadeh, 2022. "Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation," Climatic Change, Springer, vol. 174(3), pages 1-15, October.
- Young, Peter C., 2018. "Data-based mechanistic modelling and forecasting globally averaged surface temperature," International Journal of Forecasting, Elsevier, vol. 34(2), pages 314-335.
- Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Gan Zhang, 2023. "Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Soledad Collazo & Mariana Barrucand & Matilde Rusticucci, 2023. "Hot and dry compound events in South America: present climate and future projections, and their association with the Pacific Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 299-323, October.
- Shuo Fu & Shineng Hu & Xiao-Tong Zheng & Kay McMonigal & Sarah Larson & Yiqun Tian, 2024. "Historical changes in wind-driven ocean circulation drive pattern of Pacific warming," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52731-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.