IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52386-3.html
   My bibliography  Save this article

in situ observation of reversible phase transitions in Gd-doped ceria driven by electron beam irradiation

Author

Listed:
  • Ke Ran

    (RWTH Aachen University
    Forschungszentrum Jülich GmbH
    AMO GmbH)

  • Fanlin Zeng

    (Forschungszentrum Jülich GmbH)

  • Lei Jin

    (Forschungszentrum Jülich GmbH)

  • Stefan Baumann

    (Forschungszentrum Jülich GmbH)

  • Wilhelm A. Meulenberg

    (Forschungszentrum Jülich GmbH
    University of Twente)

  • Joachim Mayer

    (RWTH Aachen University
    Forschungszentrum Jülich GmbH)

Abstract

Ceria-based oxides are widely utilized in diverse energy-related applications, with attractive functionalities arising from a defective structure due to the formation of mobile oxygen vacancies ( $${V}_{O}^{\cdot \cdot }$$ V O ⋅ ⋅ ). Notwithstanding its significance, behaviors of the defective structure and $${V}_{O}^{\cdot \cdot }$$ V O ⋅ ⋅ in response to external stimuli remain incompletely explored. Taking the Gd-doped ceria (Ce0.88Gd0.12O2-δ) as a model system and leveraging state-of-the-art transmission electron microscopy techniques, reversible phase transitions associated with massive $${V}_{O}^{\cdot \cdot }$$ V O ⋅ ⋅ rearrangement are stimulated and visualized in situ with sub-Å resolution. Electron dose rate is identified as a pivotal factor in modulating the phase transition, and both the $${V}_{O}^{\cdot \cdot }$$ V O ⋅ ⋅ concentration and the orientation of the newly formed phase can be altered via electron beam. Our results provide indispensable insights for understanding and refining the microscopic pathways of phase transition as well as defect engineering, and could be applied to other similar functional oxides.

Suggested Citation

  • Ke Ran & Fanlin Zeng & Lei Jin & Stefan Baumann & Wilhelm A. Meulenberg & Joachim Mayer, 2024. "in situ observation of reversible phase transitions in Gd-doped ceria driven by electron beam irradiation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52386-3
    DOI: 10.1038/s41467-024-52386-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52386-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52386-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hao-Xin Liu & Shan-Qing Li & Wei-Wei Wang & Wen-Zhu Yu & Wu-Jun Zhang & Chao Ma & Chun-Jiang Jia, 2022. "Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. E. Perry Murray & T. Tsai & S. A. Barnett, 1999. "A direct-methane fuel cell with a ceria-based anode," Nature, Nature, vol. 400(6745), pages 649-651, August.
    3. Zhenzhong Yang & Le Wang & Jeffrey A. Dhas & Mark H. Engelhard & Mark E. Bowden & Wen Liu & Zihua Zhu & Chongmin Wang & Scott A. Chambers & Peter V. Sushko & Yingge Du, 2023. "Guided anisotropic oxygen transport in vacancy ordered oxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong-Xiao Wang & Hao-Xin Liu & Hao Gu & Jin-Ying Li & Xiao-Meng Lai & Xin-Pu Fu & Wei-Wei Wang & Qiang Fu & Feng Ryan Wang & Chao Ma & Chun-Jiang Jia, 2024. "Hydroxylated TiO2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO2 hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yue Teng & Ho Yeon Lee & Haesu Lee & Yoon Ho Lee, 2022. "Effect of Sputtering Pressure on the Nanostructure and Residual Stress of Thin-Film YSZ Electrolyte," Sustainability, MDPI, vol. 14(15), pages 1-9, August.
    3. Shri Prakash, B. & Senthil Kumar, S. & Aruna, S.T., 2014. "Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 149-179.
    4. Berre Kumuk & Nisa Nur Atak & Battal Dogan & Salih Ozer & Pinar Demircioglu & Ismail Bogrekci, 2024. "Numerical and Thermodynamic Analysis of the Effect of Operating Temperature in Methane-Fueled SOFC," Energies, MDPI, vol. 17(11), pages 1-17, May.
    5. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    6. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    7. Shujuan Liu & Teng Li & Feng Shi & Haiying Ma & Bin Wang & Xingchao Dai & Xinjiang Cui, 2023. "Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    9. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Massimiliano Cimenti & Josephine M. Hill, 2009. "Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes," Energies, MDPI, vol. 2(2), pages 1-34, June.
    11. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    12. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    14. Sariboğa, Vedat & Öksüzömer, Faruk, 2012. "The investigation of active Ni/YSZ interlayer for Cu-based direct-methane solid oxide fuel cells," Applied Energy, Elsevier, vol. 93(C), pages 707-721.
    15. Xu, Han & Dang, Zheng, 2016. "Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming," Applied Energy, Elsevier, vol. 178(C), pages 294-307.
    16. Hu, Boxun & Keane, Michael & Patil, Kailash & Mahapatra, Manoj K. & Pasaogullari, Ugur & Singh, Prabhakar, 2014. "Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells," Applied Energy, Elsevier, vol. 134(C), pages 342-348.
    17. Park, Kwangjin & Lee, Sangho & Bae, Gyujong & Bae, Joongmyeon, 2015. "Performance analysis of Cu, Sn and Rh impregnated NiO/CGO91 anode for butane internal reforming SOFC at intermediate temperature," Renewable Energy, Elsevier, vol. 83(C), pages 483-490.
    18. Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.
    19. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    20. Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52386-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.