IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40746-4.html
   My bibliography  Save this article

Guided anisotropic oxygen transport in vacancy ordered oxides

Author

Listed:
  • Zhenzhong Yang

    (Pacific Northwest National Laboratory
    East China Normal University)

  • Le Wang

    (Pacific Northwest National Laboratory)

  • Jeffrey A. Dhas

    (Oregon State University
    Pacific Northwest National Laboratory)

  • Mark H. Engelhard

    (Pacific Northwest National Laboratory)

  • Mark E. Bowden

    (Pacific Northwest National Laboratory)

  • Wen Liu

    (Pacific Northwest National Laboratory
    China University of Geosciences)

  • Zihua Zhu

    (Pacific Northwest National Laboratory)

  • Chongmin Wang

    (Pacific Northwest National Laboratory)

  • Scott A. Chambers

    (Pacific Northwest National Laboratory)

  • Peter V. Sushko

    (Pacific Northwest National Laboratory)

  • Yingge Du

    (Pacific Northwest National Laboratory)

Abstract

Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO2.5 epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO2.75 with different ground electronic properties before reaching a fully oxidized, metallic SrFeO3 phase. The diffusion steps and reaction intermediates are revealed by means of ab-initio calculations. The principles of controlling oxygen diffusion pathways and reaction intermediates demonstrated here may advance the rational design of structurally ordered oxides for tailored applications and provide insights for developing devices with multiple states of regulation.

Suggested Citation

  • Zhenzhong Yang & Le Wang & Jeffrey A. Dhas & Mark H. Engelhard & Mark E. Bowden & Wen Liu & Zihua Zhu & Chongmin Wang & Scott A. Chambers & Peter V. Sushko & Yingge Du, 2023. "Guided anisotropic oxygen transport in vacancy ordered oxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40746-4
    DOI: 10.1038/s41467-023-40746-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40746-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40746-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nianpeng Lu & Pengfei Zhang & Qinghua Zhang & Ruimin Qiao & Qing He & Hao-Bo Li & Yujia Wang & Jingwen Guo & Ding Zhang & Zheng Duan & Zhuolu Li & Meng Wang & Shuzhen Yang & Mingzhe Yan & Elke Arenhol, 2017. "Electric-field control of tri-state phase transformation with a selective dual-ion switch," Nature, Nature, vol. 546(7656), pages 124-128, June.
    2. Qinghua Zhang & Xu He & Jinan Shi & Nianpeng Lu & Haobo Li & Qian Yu & Ze Zhang & Long-Qing Chen & Bill Morris & Qiang Xu & Pu Yu & Lin Gu & Kuijuan Jin & Ce-Wen Nan, 2017. "Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5-σ," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Ran & Fanlin Zeng & Lei Jin & Stefan Baumann & Wilhelm A. Meulenberg & Joachim Mayer, 2024. "in situ observation of reversible phase transitions in Gd-doped ceria driven by electron beam irradiation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Zhang & Yang Zhang & Linglong Li & Xing Mou & Huining Peng & Shengchun Shen & Meng Wang & Kunhong Xiao & Shuai-Hua Ji & Di Yi & Tianxiang Nan & Jianshi Tang & Pu Yu, 2023. "Nanoscale multistate resistive switching in WO3 through scanning probe induced proton evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ji Soo Lim & Ho-Hyun Nahm & Marco Campanini & Jounghee Lee & Yong-Jin Kim & Heung-Sik Park & Jeonghun Suh & Jun Jung & Yongsoo Yang & Tae Yeong Koo & Marta D. Rossell & Yong-Hyun Kim & Chan-Ho Yang, 2022. "Critical ionic transport across an oxygen-vacancy ordering transition," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40746-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.