IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52132-9.html
   My bibliography  Save this article

An emergent attractor network in a passive resistive switching circuit

Author

Listed:
  • Yongxiang Li

    (Peking University)

  • Shiqing Wang

    (Peking University)

  • Ke Yang

    (Peking University)

  • Yuchao Yang

    (Peking University
    Peking University
    Peking University
    Chinese Institute for Brain Research (CIBR))

  • Zhong Sun

    (Peking University
    Peking University)

Abstract

Resistive memory devices feature drastic conductance change and fast switching dynamics. Particularly, nonvolatile bipolar switching events (set and reset) can be regarded as a unique nonlinear activation function characteristic of a hysteretic loop. Upon simultaneous activation of multiple rows in a crosspoint array, state change of one device may contribute to the conditional switching of others, suggesting an interactive network existing in the circuit. Here, we prove that a passive resistive switching circuit is essentially an attractor network, where the binary memory devices are artificial neurons while the pairwise voltage differences define an anti-symmetric weight matrix. An energy function is successfully constructed for this network, showing that every switching in the circuit would decrease the energy. Due to the nonvolatile hysteretic function, the energy change for bit flip in this network is thresholded, which is different from the classic Hopfield network. It allows more stable states stored in the circuit, thus representing a highly compact and efficient solution for associative memory. Network dynamics (towards stable states) and their modulations by external voltages have been demonstrated in experiment by 3-neuron and 4-neuron circuits.

Suggested Citation

  • Yongxiang Li & Shiqing Wang & Ke Yang & Yuchao Yang & Zhong Sun, 2024. "An emergent attractor network in a passive resistive switching circuit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52132-9
    DOI: 10.1038/s41467-024-52132-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52132-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52132-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaodong Yan & Zhiren Zheng & Vinod K. Sangwan & Justin H. Qian & Xueqiao Wang & Stephanie E. Liu & Kenji Watanabe & Takashi Taniguchi & Su-Yang Xu & Pablo Jarillo-Herrero & Qiong Ma & Mark C. Hersam, 2023. "Moiré synaptic transistor with room-temperature neuromorphic functionality," Nature, Nature, vol. 624(7992), pages 551-556, December.
    2. Julien Borghetti & Gregory S. Snider & Philip J. Kuekes & J. Joshua Yang & Duncan R. Stewart & R. Stanley Williams, 2010. "‘Memristive’ switches enable ‘stateful’ logic operations via material implication," Nature, Nature, vol. 464(7290), pages 873-876, April.
    3. Weier Wan & Rajkumar Kubendran & Clemens Schaefer & Sukru Burc Eryilmaz & Wenqiang Zhang & Dabin Wu & Stephen Deiss & Priyanka Raina & He Qian & Bin Gao & Siddharth Joshi & Huaqiang Wu & H.-S. Philip , 2022. "A compute-in-memory chip based on resistive random-access memory," Nature, Nature, vol. 608(7923), pages 504-512, August.
    4. M. Prezioso & M. R. Mahmoodi & F. Merrikh Bayat & H. Nili & H. Kim & A. Vincent & D. B. Strukov, 2018. "Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. S.G. Hu & Y. Liu & Z Liu & T.P. Chen & J.J. Wang & Q. Yu & L.J. Deng & Y. Yin & Sumio Hosaka, 2015. "Associative memory realized by a reconfigurable memristive Hopfield neural network," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    6. S. Ambrogio & P. Narayanan & A. Okazaki & A. Fasoli & C. Mackin & K. Hosokawa & A. Nomura & T. Yasuda & A. Chen & A. Friz & M. Ishii & J. Luquin & Y. Kohda & N. Saulnier & K. Brew & S. Choi & I. Ok & , 2023. "An analog-AI chip for energy-efficient speech recognition and transcription," Nature, Nature, vol. 620(7975), pages 768-775, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Malte J. Rasch & Fabio Carta & Omobayode Fagbohungbe & Tayfun Gokmen, 2024. "Fast and robust analog in-memory deep neural network training," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Long Liu & Di Wang & Dandan Wang & Yan Sun & Huai Lin & Xiliang Gong & Yifan Zhang & Ruifeng Tang & Zhihong Mai & Zhipeng Hou & Yumeng Yang & Peng Li & Lan Wang & Qing Luo & Ling Li & Guozhong Xing & , 2024. "Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Jens E. Pedersen & Steven Abreu & Matthias Jobst & Gregor Lenz & Vittorio Fra & Felix Christian Bauer & Dylan Richard Muir & Peng Zhou & Bernhard Vogginger & Kade Heckel & Gianvito Urgese & Sadasivan , 2024. "Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired computing," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Xiangjin Wu & Asir Intisar Khan & Hengyuan Lee & Chen-Feng Hsu & Huairuo Zhang & Heshan Yu & Neel Roy & Albert V. Davydov & Ichiro Takeuchi & Xinyu Bao & H.-S. Philip Wong & Eric Pop, 2024. "Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Yanyun Ren & Xiaobo Bu & Ming Wang & Yue Gong & Junjie Wang & Yuyang Yang & Guijun Li & Meng Zhang & Ye Zhou & Su-Ting Han, 2022. "Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Han Zhao & Zhengwu Liu & Jianshi Tang & Bin Gao & Qi Qin & Jiaming Li & Ying Zhou & Peng Yao & Yue Xi & Yudeng Lin & He Qian & Huaqiang Wu, 2023. "Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Kun Li & Rongfeng Li & Longzhou Cao & Yuming Feng & Babatunde Oluwaseun Onasanya, 2023. "Periodically Intermittent Control of Memristor-Based Hyper-Chaotic Bao-like System," Mathematics, MDPI, vol. 11(5), pages 1-17, March.
    16. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    17. Choi, Woo Sik & Kim, Donguk & Yang, Tae Jun & Chae, Inseok & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Electrode-dependent electrical switching characteristics of InGaZnO memristor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Jaeseoung Park & Ashwani Kumar & Yucheng Zhou & Sangheon Oh & Jeong-Hoon Kim & Yuhan Shi & Soumil Jain & Gopabandhu Hota & Erbin Qiu & Amelie L. Nagle & Ivan K. Schuller & Catherine D. Schuman & Gert , 2024. "Multi-level, forming and filament free, bulk switching trilayer RRAM for neuromorphic computing at the edge," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52132-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.