IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-42792-4.html
   My bibliography  Save this article

Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory

Author

Listed:
  • Xiangjin Wu

    (Stanford University)

  • Asir Intisar Khan

    (Stanford University)

  • Hengyuan Lee

    (Corporate Research, Taiwan Semiconductor Manufacturing Company (TSMC))

  • Chen-Feng Hsu

    (Corporate Research, Taiwan Semiconductor Manufacturing Company (TSMC))

  • Huairuo Zhang

    (Materials Science and Engineering Division, National Institute of Standards and Technology
    Theiss Research, Inc.)

  • Heshan Yu

    (University of Maryland
    Tianjin University)

  • Neel Roy

    (Stanford University)

  • Albert V. Davydov

    (Materials Science and Engineering Division, National Institute of Standards and Technology)

  • Ichiro Takeuchi

    (University of Maryland)

  • Xinyu Bao

    (Corporate Research, Taiwan Semiconductor Manufacturing Company (TSMC))

  • H.-S. Philip Wong

    (Stanford University)

  • Eric Pop

    (Stanford University
    Stanford University
    Stanford University)

Abstract

Data-centric applications are pushing the limits of energy-efficiency in today’s computing systems, including those based on phase-change memory (PCM). This technology must achieve low-power and stable operation at nanoscale dimensions to succeed in high-density memory arrays. Here we use a novel combination of phase-change material superlattices and nanocomposites (based on Ge4Sb6Te7), to achieve record-low power density ≈ 5 MW/cm2 and ≈ 0.7 V switching voltage (compatible with modern logic processors) in PCM devices with the smallest dimensions to date (≈ 40 nm) for a superlattice technology on a CMOS-compatible substrate. These devices also simultaneously exhibit low resistance drift with 8 resistance states, good endurance (≈ 2 × 108 cycles), and fast switching (≈ 40 ns). The efficient switching is enabled by strong heat confinement within the superlattice materials and the nanoscale device dimensions. The microstructural properties of the Ge4Sb6Te7 nanocomposite and its high crystallization temperature ensure the fast-switching speed and stability in our superlattice PCM devices. These results re-establish PCM technology as one of the frontrunners for energy-efficient data storage and computing.

Suggested Citation

  • Xiangjin Wu & Asir Intisar Khan & Hengyuan Lee & Chen-Feng Hsu & Huairuo Zhang & Heshan Yu & Neel Roy & Albert V. Davydov & Ichiro Takeuchi & Xinyu Bao & H.-S. Philip Wong & Eric Pop, 2024. "Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-42792-4
    DOI: 10.1038/s41467-023-42792-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42792-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42792-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Ambrogio & Pritish Narayanan & Hsinyu Tsai & Robert M. Shelby & Irem Boybat & Carmelo Nolfo & Severin Sidler & Massimo Giordano & Martina Bodini & Nathan C. P. Farinha & Benjamin Killeen & Chr, 2018. "Equivalent-accuracy accelerated neural-network training using analogue memory," Nature, Nature, vol. 558(7708), pages 60-67, June.
    2. Weier Wan & Rajkumar Kubendran & Clemens Schaefer & Sukru Burc Eryilmaz & Wenqiang Zhang & Dabin Wu & Stephen Deiss & Priyanka Raina & He Qian & Bin Gao & Siddharth Joshi & Huaqiang Wu & H.-S. Philip , 2022. "A compute-in-memory chip based on resistive random-access memory," Nature, Nature, vol. 608(7923), pages 504-512, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ruibin Mao & Bo Wen & Arman Kazemi & Yahui Zhao & Ann Franchesca Laguna & Rui Lin & Ngai Wong & Michael Niemier & X. Sharon Hu & Xia Sheng & Catherine E. Graves & John Paul Strachan & Can Li, 2022. "Experimentally validated memristive memory augmented neural network with efficient hashing and similarity search," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Bin Gao & Ying Zhou & Qingtian Zhang & Shuanglin Zhang & Peng Yao & Yue Xi & Qi Liu & Meiran Zhao & Wenqiang Zhang & Zhengwu Liu & Xinyi Li & Jianshi Tang & He Qian & Huaqiang Wu, 2022. "Memristor-based analogue computing for brain-inspired sound localization with in situ training," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Darshit Mehta & Mustafizur Rahman & Kenji Aono & Shantanu Chakrabartty, 2022. "An adaptive synaptic array using Fowler–Nordheim dynamic analog memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Maldonado, D. & Aguilera-Pedregosa, C. & Vinuesa, G. & García, H. & Dueñas, S. & Castán, H. & Aldana, S. & González, M.B. & Moreno, E. & Jiménez-Molinos, F. & Campabadal, F. & Roldán, J.B., 2022. "An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Seokho Seo & Beomjin Kim & Donghoon Kim & Seungwoo Park & Tae Ryong Kim & Junkyu Park & Hakcheon Jeong & See-On Park & Taehoon Park & Hyeok Shin & Myung-Su Kim & Yang-Kyu Choi & Shinhyun Choi, 2022. "The gate injection-based field-effect synapse transistor with linear conductance update for online training," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Charles Mackin & Malte J. Rasch & An Chen & Jonathan Timcheck & Robert L. Bruce & Ning Li & Pritish Narayanan & Stefano Ambrogio & Manuel Gallo & S. R. Nandakumar & Andrea Fasoli & Jose Luquin & Alexa, 2022. "Optimised weight programming for analogue memory-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Filippo Moro & Emmanuel Hardy & Bruno Fain & Thomas Dalgaty & Paul Clémençon & Alessio Prà & Eduardo Esmanhotto & Niccolò Castellani & François Blard & François Gardien & Thomas Mesquida & François Ru, 2022. "Neuromorphic object localization using resistive memories and ultrasonic transducers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Melika Payvand & Filippo Moro & Kumiko Nomura & Thomas Dalgaty & Elisa Vianello & Yoshifumi Nishi & Giacomo Indiveri, 2022. "Self-organization of an inhomogeneous memristive hardware for sequence learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Han Zhao & Zhengwu Liu & Jianshi Tang & Bin Gao & Qi Qin & Jiaming Li & Ying Zhou & Peng Yao & Yue Xi & Yudeng Lin & He Qian & Huaqiang Wu, 2023. "Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Jaeseoung Park & Ashwani Kumar & Yucheng Zhou & Sangheon Oh & Jeong-Hoon Kim & Yuhan Shi & Soumil Jain & Gopabandhu Hota & Erbin Qiu & Amelie L. Nagle & Ivan K. Schuller & Catherine D. Schuman & Gert , 2024. "Multi-level, forming and filament free, bulk switching trilayer RRAM for neuromorphic computing at the edge," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Lee, Geun Ho & Kim, Tae-Hyeon & Youn, Sangwook & Park, Jinwoo & Kim, Sungjoon & Kim, Hyungjin, 2023. "Low-fluctuation nonlinear model using incremental step pulse programming with memristive devices," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    19. Mingrui Jiang & Keyi Shan & Chengping He & Can Li, 2023. "Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Fernando Aguirre & Abu Sebastian & Manuel Gallo & Wenhao Song & Tong Wang & J. Joshua Yang & Wei Lu & Meng-Fan Chang & Daniele Ielmini & Yuchao Yang & Adnan Mehonic & Anthony Kenyon & Marco A. Villena, 2024. "Hardware implementation of memristor-based artificial neural networks," Nature Communications, Nature, vol. 15(1), pages 1-40, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-42792-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.