IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v624y2023i7992d10.1038_s41586-023-06791-1.html
   My bibliography  Save this article

Moiré synaptic transistor with room-temperature neuromorphic functionality

Author

Listed:
  • Xiaodong Yan

    (Northwestern University)

  • Zhiren Zheng

    (Massachusetts Institute of Technology)

  • Vinod K. Sangwan

    (Northwestern University)

  • Justin H. Qian

    (Northwestern University)

  • Xueqiao Wang

    (Massachusetts Institute of Technology)

  • Stephanie E. Liu

    (Northwestern University)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Su-Yang Xu

    (Harvard University)

  • Pablo Jarillo-Herrero

    (Massachusetts Institute of Technology)

  • Qiong Ma

    (Boston College
    CIFAR)

  • Mark C. Hersam

    (Northwestern University
    Northwestern University
    Northwestern University)

Abstract

Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures1–4. When combined with the exceptionally high electrostatic control in atomically thin materials5–8, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures9–14, thus precluding real-world applications of moiré quantum materials. Here we report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure. The asymmetric moiré potential gives rise to robust electronic ratchet states, which enable hysteretic, non-volatile injection of charge carriers that control the conductance of the device. The asymmetric gating in dual-gated moiré heterostructures realizes diverse biorealistic neuromorphic functionalities, such as reconfigurable synaptic responses, spatiotemporal-based tempotrons and Bienenstock–Cooper–Munro input-specific adaptation. In this manner, the moiré synaptic transistor enables efficient compute-in-memory designs and edge hardware accelerators for artificial intelligence and machine learning.

Suggested Citation

  • Xiaodong Yan & Zhiren Zheng & Vinod K. Sangwan & Justin H. Qian & Xueqiao Wang & Stephanie E. Liu & Kenji Watanabe & Takashi Taniguchi & Su-Yang Xu & Pablo Jarillo-Herrero & Qiong Ma & Mark C. Hersam, 2023. "Moiré synaptic transistor with room-temperature neuromorphic functionality," Nature, Nature, vol. 624(7992), pages 551-556, December.
  • Handle: RePEc:nat:nature:v:624:y:2023:i:7992:d:10.1038_s41586-023-06791-1
    DOI: 10.1038/s41586-023-06791-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06791-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06791-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongxiang Li & Shiqing Wang & Ke Yang & Yuchao Yang & Zhong Sun, 2024. "An emergent attractor network in a passive resistive switching circuit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Qiaoling Lin & Hanlin Fang & Alexei Kalaboukhov & Yuanda Liu & Yi Zhang & Moritz Fischer & Juntao Li & Joakim Hagel & Samuel Brem & Ermin Malic & Nicolas Stenger & Zhipei Sun & Martijn Wubs & Sanshui , 2024. "Moiré-engineered light-matter interactions in MoS2/WSe2 heterobilayers at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:624:y:2023:i:7992:d:10.1038_s41586-023-06791-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.