IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43317-9.html
   My bibliography  Save this article

Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks

Author

Listed:
  • Djohan Bonnet

    (Université Grenoble Alpes, CEA, LETI
    Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • Tifenn Hirtzlin

    (Université Grenoble Alpes, CEA, LETI)

  • Atreya Majumdar

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • Thomas Dalgaty

    (Université Grenoble Alpes, CEA, LIST)

  • Eduardo Esmanhotto

    (Université Grenoble Alpes, CEA, LETI)

  • Valentina Meli

    (Université Grenoble Alpes, CEA, LETI)

  • Niccolo Castellani

    (Université Grenoble Alpes, CEA, LETI)

  • Simon Martin

    (Université Grenoble Alpes, CEA, LETI)

  • Jean-François Nodin

    (Université Grenoble Alpes, CEA, LETI)

  • Guillaume Bourgeois

    (Université Grenoble Alpes, CEA, LETI)

  • Jean-Michel Portal

    (Aix-Marseille Université, CNRS, Institut Matériaux Microélectronique Nanosciences de Provence)

  • Damien Querlioz

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • Elisa Vianello

    (Université Grenoble Alpes, CEA, LETI)

Abstract

Safety-critical sensory applications, like medical diagnosis, demand accurate decisions from limited, noisy data. Bayesian neural networks excel at such tasks, offering predictive uncertainty assessment. However, because of their probabilistic nature, they are computationally intensive. An innovative solution utilizes memristors’ inherent probabilistic nature to implement Bayesian neural networks. However, when using memristors, statistical effects follow the laws of device physics, whereas in Bayesian neural networks, those effects can take arbitrary shapes. This work overcome this difficulty by adopting a variational inference training augmented by a “technological loss”, incorporating memristor physics. This technique enabled programming a Bayesian neural network on 75 crossbar arrays of 1,024 memristors, incorporating CMOS periphery for in-memory computing. The experimental neural network classified heartbeats with high accuracy, and estimated the certainty of its predictions. The results reveal orders-of-magnitude improvement in inference energy efficiency compared to a microcontroller or an embedded graphics processing unit performing the same task.

Suggested Citation

  • Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43317-9
    DOI: 10.1038/s41467-023-43317-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43317-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43317-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Vinay Joshi & Manuel Le Gallo & Simon Haefeli & Irem Boybat & S. R. Nandakumar & Christophe Piveteau & Martino Dazzi & Bipin Rajendran & Abu Sebastian & Evangelos Eleftheriou, 2020. "Accurate deep neural network inference using computational phase-change memory," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Charles Mackin & Malte J. Rasch & An Chen & Jonathan Timcheck & Robert L. Bruce & Ning Li & Pritish Narayanan & Stefano Ambrogio & Manuel Gallo & S. R. Nandakumar & Andrea Fasoli & Jose Luquin & Alexa, 2022. "Optimised weight programming for analogue memory-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Seungchul Jung & Hyungwoo Lee & Sungmeen Myung & Hyunsoo Kim & Seung Keun Yoon & Soon-Wan Kwon & Yongmin Ju & Minje Kim & Wooseok Yi & Shinhee Han & Baeseong Kwon & Boyoung Seo & Kilho Lee & Gwan-Hyeo, 2022. "A crossbar array of magnetoresistive memory devices for in-memory computing," Nature, Nature, vol. 601(7892), pages 211-216, January.
    5. Weier Wan & Rajkumar Kubendran & Clemens Schaefer & Sukru Burc Eryilmaz & Wenqiang Zhang & Dabin Wu & Stephen Deiss & Priyanka Raina & He Qian & Bin Gao & Siddharth Joshi & Huaqiang Wu & H.-S. Philip , 2022. "A compute-in-memory chip based on resistive random-access memory," Nature, Nature, vol. 608(7923), pages 504-512, August.
    6. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Stefano Ambrogio & Pritish Narayanan & Hsinyu Tsai & Robert M. Shelby & Irem Boybat & Carmelo Nolfo & Severin Sidler & Massimo Giordano & Martina Bodini & Nathan C. P. Farinha & Benjamin Killeen & Chr, 2018. "Equivalent-accuracy accelerated neural-network training using analogue memory," Nature, Nature, vol. 558(7708), pages 60-67, June.
    8. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    9. M. Prezioso & F. Merrikh-Bayat & B. D. Hoskins & G. C. Adam & K. K. Likharev & D. B. Strukov, 2015. "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, Nature, vol. 521(7550), pages 61-64, May.
    10. Zhengwu Liu & Jianshi Tang & Bin Gao & Peng Yao & Xinyi Li & Dingkun Liu & Ying Zhou & He Qian & Bo Hong & Huaqiang Wu, 2020. "Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Brückerhoff-Plückelmann & Hendrik Borras & Bernhard Klein & Akhil Varri & Marlon Becker & Jelle Dijkstra & Martin Brückerhoff & C. David Wright & Martin Salinga & Harish Bhaskaran & Benjamin Ris, 2024. "Probabilistic photonic computing with chaotic light," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Bin Gao & Ying Zhou & Qingtian Zhang & Shuanglin Zhang & Peng Yao & Yue Xi & Qi Liu & Meiran Zhao & Wenqiang Zhang & Zhengwu Liu & Xinyi Li & Jianshi Tang & He Qian & Huaqiang Wu, 2022. "Memristor-based analogue computing for brain-inspired sound localization with in situ training," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Long Liu & Di Wang & Dandan Wang & Yan Sun & Huai Lin & Xiliang Gong & Yifan Zhang & Ruifeng Tang & Zhihong Mai & Zhipeng Hou & Yumeng Yang & Peng Li & Lan Wang & Qing Luo & Ling Li & Guozhong Xing & , 2024. "Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Ruibin Mao & Bo Wen & Arman Kazemi & Yahui Zhao & Ann Franchesca Laguna & Rui Lin & Ngai Wong & Michael Niemier & X. Sharon Hu & Xia Sheng & Catherine E. Graves & John Paul Strachan & Can Li, 2022. "Experimentally validated memristive memory augmented neural network with efficient hashing and similarity search," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Ik-Jyae Kim & Min-Kyu Kim & Jang-Sik Lee, 2023. "Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Han Zhao & Zhengwu Liu & Jianshi Tang & Bin Gao & Qi Qin & Jiaming Li & Ying Zhou & Peng Yao & Yue Xi & Yudeng Lin & He Qian & Huaqiang Wu, 2023. "Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Yulin Feng & Yizhou Zhang & Zheng Zhou & Peng Huang & Lifeng Liu & Xiaoyan Liu & Jinfeng Kang, 2024. "Memristor-based storage system with convolutional autoencoder-based image compression network," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Xiangjin Wu & Asir Intisar Khan & Hengyuan Lee & Chen-Feng Hsu & Huairuo Zhang & Heshan Yu & Neel Roy & Albert V. Davydov & Ichiro Takeuchi & Xinyu Bao & H.-S. Philip Wong & Eric Pop, 2024. "Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Melika Payvand & Filippo Moro & Kumiko Nomura & Thomas Dalgaty & Elisa Vianello & Yoshifumi Nishi & Giacomo Indiveri, 2022. "Self-organization of an inhomogeneous memristive hardware for sequence learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    17. Jangsaeng Kim & Eun Chan Park & Wonjun Shin & Ryun-Han Koo & Chang-Hyeon Han & He Young Kang & Tae Gyu Yang & Youngin Goh & Kilho Lee & Daewon Ha & Suraj S. Cheema & Jae Kyeong Jeong & Daewoong Kwon, 2024. "Analog reservoir computing via ferroelectric mixed phase boundary transistors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Maldonado, D. & Aguilera-Pedregosa, C. & Vinuesa, G. & García, H. & Dueñas, S. & Castán, H. & Aldana, S. & González, M.B. & Moreno, E. & Jiménez-Molinos, F. & Campabadal, F. & Roldán, J.B., 2022. "An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Han Xu & Dashan Shang & Qing Luo & Junjie An & Yue Li & Shuyu Wu & Zhihong Yao & Woyu Zhang & Xiaoxin Xu & Chunmeng Dou & Hao Jiang & Liyang Pan & Xumeng Zhang & Ming Wang & Zhongrui Wang & Jianshi Ta, 2023. "A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Malte J. Rasch & Fabio Carta & Omobayode Fagbohungbe & Tayfun Gokmen, 2024. "Fast and robust analog in-memory deep neural network training," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43317-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.