IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6720d10.1038_17561.html
   My bibliography  Save this article

Light speed reduction to 17 metres per second in an ultracold atomic gas

Author

Listed:
  • Lene Vestergaard Hau

    (Rowland Institute for Science
    Harvard University)

  • S. E. Harris

    (Applied Sciences, Harvard University)

  • Zachary Dutton

    (Rowland Institute for Science
    Harvard University)

  • Cyrus H. Behroozi

    (Rowland Institute for Science
    Edward L. Ginzton Laboratory, Stanford University)

Abstract

Techniques that use quantum interference effects are being actively investigated to manipulate the optical properties of quantum systems1. One such example is electromagnetically induced transparency, a quantum effect that permits the propagation of light pulses through an otherwise opaque medium2,3,4,5. Here we report an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum. The gas is cooled to nanokelvin temperatures by laser and evaporative cooling6,7,8,9,10. The quantum interference controlling the optical properties of the medium is set up by a ‘coupling’ laser beam propagating at a right angle to the pulsed ‘probe’ beam. At nanokelvin temperatures, the variation of refractive index with probe frequency can be made very steep. In conjunction with the high atomic density, this results in the exceptionally low light speeds observed. By cooling the cloud below the transition temperature for Bose–Einstein condensation11,12,13 (causing a macroscopic population of alkali atoms in the quantum ground state of the confining potential), we observe even lower pulse propagation velocities (17?m?s−1) owing to the increased atom density. We report an inferred nonlinear refractive index of 0.18?cm2?W−1 and find that the system shows exceptionally large optical nonlinearities, which are of potential fundamental and technological interest for quantum optics.

Suggested Citation

  • Lene Vestergaard Hau & S. E. Harris & Zachary Dutton & Cyrus H. Behroozi, 1999. "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Nature, vol. 397(6720), pages 594-598, February.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6720:d:10.1038_17561
    DOI: 10.1038/17561
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/17561
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/17561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandilara, Aikaterini & Ivić, Zoran & Čevizović, Dalibor & Pržulj, Željko, 2017. "Self-induced transparency of the optical phonons," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 14-20.
    2. Dong, Hoang Minh & Hien, Nguyen Thi Thu & Bang, Nguyen Huy & Van Doai, Le, 2024. "Dynamics of twin pulse propagation and dual-optical switching in a Λ + Ξ atomic medium," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Zhongyin Li & Ji Lin & Huijun Li, 2023. "Generation and Controllability of High-Dimensional Rogue Waves in an Electromagnetically Induced Transparent Medium," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
    4. Akyüz, Cenk & Erman, Fatih & Uncu, Haydar, 2024. "The harmonic oscillator potential perturbed by a combination of linear and non-linear Dirac delta interactions with application to Bose–Einstein condensation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    5. Yesenia A. García Jomaso & Brenda Vargas & David Ley Domínguez & Román J. Armenta-Rico & Huziel E. Sauceda & César L. Ordoñez-Romero & Hugo A. Lara-García & Arturo Camacho-Guardian & Giuseppe Pirrucci, 2024. "Intercavity polariton slows down dynamics in strongly coupled cavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yicheng Zhu & Jiankun Hou & Qi Geng & Boyi Xue & Yuping Chen & Xianfeng Chen & Li Ge & Wenjie Wan, 2024. "Storing light near an exceptional point," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Huang, Kai-Yu & Zhao, Yuan & Wu, Si-Qing & Xu, Si-Liu & Belić, Milivoj R. & Malomed, Boris A., 2022. "Quantum squeezing of vector slow-light solitons in a coherent atomic system," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6720:d:10.1038_17561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.