IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6819d10.1038_35054017.html
   My bibliography  Save this article

Observation of coherent optical information storage in an atomic medium using halted light pulses

Author

Listed:
  • Chien Liu

    (Rowland Institute for Science
    Division of Engineering and Applied Sciences)

  • Zachary Dutton

    (Rowland Institute for Science
    Harvard University)

  • Cyrus H. Behroozi

    (Rowland Institute for Science
    Division of Engineering and Applied Sciences)

  • Lene Vestergaard Hau

    (Rowland Institute for Science
    Division of Engineering and Applied Sciences
    Harvard University)

Abstract

Electromagnetically induced transparency1,2,3 is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a ‘coupling’ laser is used to create the interference necessary to allow the transmission of resonant pulses from a ‘probe’ laser. This technique has been used4,5,6 to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud4. Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is ‘frozen’ in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the ‘read’ and ‘write’ operations. We anticipate applications of this phenomenon for quantum information processing.

Suggested Citation

  • Chien Liu & Zachary Dutton & Cyrus H. Behroozi & Lene Vestergaard Hau, 2001. "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, Nature, vol. 409(6819), pages 490-493, January.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6819:d:10.1038_35054017
    DOI: 10.1038/35054017
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35054017
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35054017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandilara, Aikaterini & Ivić, Zoran & Čevizović, Dalibor & Pržulj, Željko, 2017. "Self-induced transparency of the optical phonons," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 14-20.
    2. Ann Bostrom & Ragnar E. Löfstedt, 2010. "Nanotechnology Risk Communication Past and Prologue," Risk Analysis, John Wiley & Sons, vol. 30(11), pages 1645-1662, November.
    3. Siyu Duan & Xin Su & Hongsong Qiu & Yushun Jiang & Jingbo Wu & Kebin Fan & Caihong Zhang & Xiaoqing Jia & Guanghao Zhu & Lin Kang & Xinglong Wu & Huabing Wang & Keyu Xia & Biaobing Jin & Jian Chen & P, 2024. "Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Ivić, Zoran & Čevizović, Dalibor & Pržulj, Željko & Lazarides, N. & Tsironis, G.P., 2021. "Dispersive properties of self–induced transparency in two–level media," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Yicheng Zhu & Jiankun Hou & Qi Geng & Boyi Xue & Yuping Chen & Xianfeng Chen & Li Ge & Wenjie Wan, 2024. "Storing light near an exceptional point," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6819:d:10.1038_35054017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.