IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53929-4.html
   My bibliography  Save this article

Exceptional points induced by unidirectional coupling in electronic circuits

Author

Listed:
  • Wenzheng Zhao

    (Nanjing University)

  • Yeang Zhang

    (Nanjing University)

  • Zixuan Gao

    (Nanjing University)

  • Delong Peng

    (Pennsylvania State University)

  • Jun-long Kou

    (Nanjing University
    Nanjing University
    Wujin-NJU Institute of Future Technology)

  • Yan-qing Lu

    (Nanjing University
    Wujin-NJU Institute of Future Technology
    Nanjing University)

  • Ramy El-Ganainy

    (Michigan Technological University
    Saint Louis University)

  • Şahin K. Özdemir

    (Pennsylvania State University
    Saint Louis University)

  • Qi Zhong

    (Pennsylvania State University)

Abstract

Exceptional points in non-Hermitian systems have attracted considerable attention due to their novel applications in several fields such as optics, electronics, and mechanics. Typically, exceptional points are constructed through gain and loss modulation or dissipative coupling within the framework of parity-time symmetry or anti-parity-time symmetry. Recent demonstration of unidirectional coupling in optical resonators to create exceptional points has offered an alternative approach. This study extends this concept to electronic circuits, examining exceptional points that emerge in unidirectionally coupled LC circuits. We show that this circuit undergoes resonance frequency splitting that exhibits either linear or square-root scaling with the strength of the applied perturbation. We further explore the circuit’s scattering properties when connected to an input-output channel and demonstrate both theoretically and experimentally the splitting of transmission dips or peaks when a perturbation is applied—highlighting the potential for building sensors with enhanced sensitivity. This work not only deepens the understanding of exceptional points in electronic circuits but also encourages the exploration and application of non-Hermiticity in electronics.

Suggested Citation

  • Wenzheng Zhao & Yeang Zhang & Zixuan Gao & Delong Peng & Jun-long Kou & Yan-qing Lu & Ramy El-Ganainy & Şahin K. Özdemir & Qi Zhong, 2024. "Exceptional points induced by unidirectional coupling in electronic circuits," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53929-4
    DOI: 10.1038/s41467-024-53929-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53929-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53929-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heming Wang & Yu-Hung Lai & Zhiquan Yuan & Myoung-Gyun Suh & Kerry Vahala, 2020. "Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    2. Youngsun Choi & Choloong Hahn & Jae Woong Yoon & Seok Ho Song, 2018. "Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    3. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 548(7666), pages 187-191, August.
    4. Sid Assawaworrarit & Xiaofang Yu & Shanhui Fan, 2017. "Robust wireless power transfer using a nonlinear parity–time-symmetric circuit," Nature, Nature, vol. 546(7658), pages 387-390, June.
    5. Weijian Chen & Şahin Kaya Özdemir & Guangming Zhao & Jan Wiersig & Lan Yang, 2017. "Exceptional points enhance sensing in an optical microcavity," Nature, Nature, vol. 548(7666), pages 192-196, August.
    6. Rodion Kononchuk & Jizhe Cai & Fred Ellis & Ramathasan Thevamaran & Tsampikos Kottos, 2022. "Exceptional-point-based accelerometers with enhanced signal-to-noise ratio," Nature, Nature, vol. 607(7920), pages 697-702, July.
    7. S. Soleymani & Q. Zhong & M. Mokim & S. Rotter & R. El-Ganainy & Ş. K. Özdemir, 2022. "Chiral and degenerate perfect absorption on exceptional surfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Erratum: Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 551(7682), pages 658-658, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Arunn Suntharalingam & Lucas Fernández-Alcázar & Rodion Kononchuk & Tsampikos Kottos, 2023. "Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yicheng Zhu & Jiankun Hou & Qi Geng & Boyi Xue & Yuping Chen & Xianfeng Chen & Li Ge & Wenjie Wan, 2024. "Storing light near an exceptional point," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Xingwei Gao & Hao He & Scott Sobolewski & Alexander Cerjan & Chia Wei Hsu, 2024. "Dynamic gain and frequency comb formation in exceptional-point lasers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Dong-Yan Chen & Lei Dong & Qing-An Huang, 2024. "Inductor-capacitor passive wireless sensors using nonlinear parity-time symmetric configurations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Pengtao Song & Xinhui Ruan & Haijin Ding & Shengyong Li & Ming Chen & Ran Huang & Le-Man Kuang & Qianchuan Zhao & Jaw-Shen Tsai & Hui Jing & Lan Yang & Franco Nori & Dongning Zheng & Yu-xi Liu & Jing , 2024. "Experimental realization of on-chip few-photon control around exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Djorwé, P. & Alphonse, H. & Abbagari, S. & Doka, S.Y. & Engo, S.G. Nana, 2023. "Synthetic magnetism for solitons in optomechanical array," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Jie Li & Fan Zhang & Xiaobin Xia & Kaihang Zhang & Jianhui Wu & Yulu Liu & Chi Zhang & Xinyu Cai & Jiaqi Lu & Liangquan Xu & Rui Wan & Dinku Hazarika & Weipeng Xuan & Jinkai Chen & Zhen Cao & Yubo Li , 2024. "An ultrasensitive multimodal intracranial pressure biotelemetric system enabled by exceptional point and iontronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Weijie Liu & Quancheng Liu & Xiang Ni & Yuechen Jia & Klaus Ziegler & Andrea Alù & Feng Chen, 2024. "Floquet parity-time symmetry in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Yumeng Yang & Xinrong Xie & Yuanzhen Li & Zijian Zhang & Yiwei Peng & Chi Wang & Erping Li & Ying Li & Hongsheng Chen & Fei Gao, 2022. "Radiative anti-parity-time plasmonics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Chen, Lei & Huang, Feifan & Wang, Hongteng & Huang, Linwei & Huang, Junhua & Liu, Gui-Shi & Chen, Yaofei & Luo, Yunhan & Chen, Zhe, 2022. "Non-Hermitian-enhanced topological protection of chaotic dynamics in one-dimensional optomechanics lattice," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53929-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.