IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics096014812400291x.html
   My bibliography  Save this article

Enhancing catalytic isomerization ability of SAPO-11 by typical acid modification in preparation of green diesel by one-step hydrotreatment of FAME

Author

Listed:
  • Li, Xingyong
  • Fan, Qiyuan
  • Wu, Kaiyue
  • Liu, Na
  • Zhang, Wei
  • Liu, Ying
  • Chen, Yubao
  • Cheng, Jun
  • Zheng, Zhifeng

Abstract

SAPO-11 molecular sieve is a promising candidate for preparation of hydrocarbon-based biofuels. Herein, two typical acids including citric acid (CA) and nitric acid (NA) are used to modify SAPO-11. The results show that the acid concentration was within the range of 0.05–1.0 mol L−1, SAPO-11 maintained a complete crystal framework structure, and more (002) crystal planes were exposed. The specific surface area, pore diameter and acid content of molecular sieve by acid modification are significantly higher than those of the fresh SAPO-11. The pore size increased from 7 nm to 17 and 18 nm, an increase of the total acid from 104 μmol g−1 to 174 and 162 μmol g−1, respectively, when SAPO-11 was treated by CA with 0.5 mol L−1 and NA with 0.3 mol L−1. Pt–Sn/SAPO-11-CA-0.5 showed the best catalytic activity with selectivity of C15–C18 alkanes of 95.8% and iso-alkanes of 33.1%. Additionally, the deoxygenation ability of Pt–Sn/SAPO-11-CA-0.5 decreased 30% after running 1200 h. Using propionic acid (PA) as the model probe molecule, the DFT reveals steps of the hydrodecarbonylation pathway of PA absorbed on the Pt (111) plane as below: CH3CH2COOH*→CH3CH2CO*→CH3CHCO*→CH3CCO*→CH3C*+CO*, and the rate-limiting step is CH3CH2COOH*→CH3CH2CO*+OH*.

Suggested Citation

  • Li, Xingyong & Fan, Qiyuan & Wu, Kaiyue & Liu, Na & Zhang, Wei & Liu, Ying & Chen, Yubao & Cheng, Jun & Zheng, Zhifeng, 2024. "Enhancing catalytic isomerization ability of SAPO-11 by typical acid modification in preparation of green diesel by one-step hydrotreatment of FAME," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s096014812400291x
    DOI: 10.1016/j.renene.2024.120226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400291X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quaranta, Eugenio & Cornacchia, Daniele, 2020. "Partial hydrogenation of a C18:3-rich FAME mixture over Pd/C," Renewable Energy, Elsevier, vol. 157(C), pages 33-42.
    2. Long, Feng & Zhai, Qiaolong & Liu, Peng & Cao, Xincheng & Jiang, Xia & Wang, Fei & Wei, Linshan & Liu, Chao & Jiang, Jianchun & Xu, Junming, 2020. "Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel," Renewable Energy, Elsevier, vol. 157(C), pages 1072-1080.
    3. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Midttun, Atle & Khanieva, Marina & Lia, Magne & Wenner, Eivind, 2022. "The greening of the European petroleum industry," Energy Policy, Elsevier, vol. 167(C).
    5. Cao, Xincheng & Long, Feng & Zhai, Qiaolong & Liu, Peng & Xu, Junming & Jiang, Jianchun, 2020. "Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported Ni-MoOx catalyst and elucidation of the active phase," Renewable Energy, Elsevier, vol. 162(C), pages 2113-2125.
    6. Liobikienė, Genovaitė & Matiiuk, Yuliia & Krikštolaitis, Ričardas, 2023. "The concern about main crises such as the Covid-19 pandemic, the war in Ukraine, and climate change's impact on energy-saving behavior," Energy Policy, Elsevier, vol. 180(C).
    7. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    8. Yang, Huiru & Du, Xiangze & Lei, Xiaomei & Zhou, Keyao & Tian, Yunfei & Li, Dan & Hu, Changwei, 2021. "Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining," Applied Energy, Elsevier, vol. 301(C).
    9. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    12. Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Ayoub, Muhammad & Abdullah, Ahmad Zuhairi, 2012. "Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2671-2686.
    14. Li, Xingyong & Chen, Yubao & Hao, Yajie & Zhang, Xu & Du, Junchen & Zhang, Aimin, 2019. "Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology," Renewable Energy, Elsevier, vol. 139(C), pages 551-559.
    15. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    16. Wu, Yankun & Duan, Jinyi & Li, Xingyong & Wu, KaiYue & Wang, Jiacheng & Zheng, Jie & Li, Shuirong & Wang, Dechao & Zheng, Zhifeng, 2023. "Synthesis of Ni/SAPO-11-X zeolites with graded secondary pore structure and its catalytic performance for hydrodeoxygenation-isomerization of FAME for green diesel production," Renewable Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Li, Xingyong & Wu, Yankun & Wang, Qi & Li, Shuirong & Ye, Yueyuan & Wang, Dechao & Zheng, Zhifeng, 2022. "Effect of preparation method of NiMo/γ-Al2O3 on the FAME hydrotreatment to produce C15–C18 alkanes," Renewable Energy, Elsevier, vol. 193(C), pages 1-12.
    3. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    4. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    5. Wu, Yankun & Duan, Jinyi & Li, Xingyong & Wu, KaiYue & Wang, Jiacheng & Zheng, Jie & Li, Shuirong & Wang, Dechao & Zheng, Zhifeng, 2023. "Synthesis of Ni/SAPO-11-X zeolites with graded secondary pore structure and its catalytic performance for hydrodeoxygenation-isomerization of FAME for green diesel production," Renewable Energy, Elsevier, vol. 218(C).
    6. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    10. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    11. Lanre Ibrahim, Ridwan & Bello Ajide, Kazeem & Usman, Muhammad & Kousar, Rakhshanda, 2022. "Heterogeneous effects of renewable energy and structural change on environmental pollution in Africa: Do natural resources and environmental technologies reduce pressure on the environment?," Renewable Energy, Elsevier, vol. 200(C), pages 244-256.
    12. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    13. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    14. Erna Astuti & Supranto Supranto & Rochmadi Rochmadi & Agus Prasetya & Krister Strom & Bengt Andersson, 2014. "Kinetic Modeling of Nitration of Glycerol," Modern Applied Science, Canadian Center of Science and Education, vol. 8(2), pages 1-78, April.
    15. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    16. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    17. Wang, Xin & Jin, Xiaodong & Wang, Hui & Wang, Yi & Zuo, Lu & Shen, Boxiong & Yang, Jiancheng, 2023. "Catalytic pyrolysis of microalgal lipids to liquid biofuels: Metal oxide doped catalysts with hierarchically porous structure and their performance," Renewable Energy, Elsevier, vol. 212(C), pages 887-896.
    18. Zhou, Li & Li, Fashe & Duan, Yaozong & Wang, Hua, 2023. "Effect of phospholipids on the premixed combustion behavior of Jatropha curcas biodiesel," Renewable Energy, Elsevier, vol. 218(C).
    19. Zhou, Yuanxiang & Adebayo, Tomiwa Sunday & Yin, Weichuan & Abbas, Shujaat, 2023. "The co-movements among renewable energy, total environmental tax, and ecological footprint in the United Kingdom: Evidence from wavelet local multiple correlation analysis," Energy Economics, Elsevier, vol. 126(C).
    20. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s096014812400291x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.