IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51840-6.html
   My bibliography  Save this article

Diffusiophoresis promotes phase separation and transport of biomolecular condensates

Author

Listed:
  • Viet Sang Doan

    (The State University of New York)

  • Ibraheem Alshareedah

    (The State University of New York)

  • Anurag Singh

    (The State University of New York)

  • Priya R. Banerjee

    (The State University of New York)

  • Sangwoo Shin

    (The State University of New York)

Abstract

The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart directional motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced enhanced motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.

Suggested Citation

  • Viet Sang Doan & Ibraheem Alshareedah & Anurag Singh & Priya R. Banerjee & Sangwoo Shin, 2024. "Diffusiophoresis promotes phase separation and transport of biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51840-6
    DOI: 10.1038/s41467-024-51840-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51840-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51840-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Keren Lasker & Steven Boeynaems & Vinson Lam & Daniel Scholl & Emma Stainton & Adam Briner & Maarten Jacquemyn & Dirk Daelemans & Ashok Deniz & Elizabeth Villa & Alex S. Holehouse & Aaron D. Gitler & , 2022. "The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Martin K. Rasmussen & Jonas N. Pedersen & Rodolphe Marie, 2020. "Size and surface charge characterization of nanoparticles with a salt gradient," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Ibraheem Alshareedah & Mahdi Muhammad Moosa & Matthew Pham & Davit A. Potoyan & Priya R. Banerjee, 2021. "Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Wei Guo & Andrew B. Kinghorn & Yage Zhang & Qingchuan Li & Aditi Dey Poonam & Julian A. Tanner & Ho Cheung Shum, 2021. "Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinesh Sundaravadivelu Devarajan & Jiahui Wang & Beata Szała-Mendyk & Shiv Rekhi & Arash Nikoubashman & Young C. Kim & Jeetain Mittal, 2024. "Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Agustín Mangiarotti & Macarena Siri & Nicky W. Tam & Ziliang Zhao & Leonel Malacrida & Rumiana Dimova, 2023. "Biomolecular condensates modulate membrane lipid packing and hydration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Y Hoang & Christopher A. Azaldegui & Rachel E. Dow & Maria Ghalmi & Julie S. Biteen & Anthony G. Vecchiarelli, 2024. "An experimental framework to assess biomolecular condensates in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Huanqing Cui & Yage Zhang & Sihan Liu & Yang Cao & Qingming Ma & Yuan Liu & Haisong Lin & Chang Li & Yang Xiao & Sammer Ul Hassan & Ho Cheung Shum, 2024. "Thermo-responsive aqueous two-phase system for two-level compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Andres R. Tejedor & Ignacio Sanchez-Burgos & Maria Estevez-Espinosa & Adiran Garaizar & Rosana Collepardo-Guevara & Jorge Ramirez & Jorge R. Espinosa, 2022. "Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Maruša Ramšak & Dominique A. Ramirez & Loren E. Hough & Michael R. Shirts & Sara Vidmar & Kristina Eleršič Filipič & Gregor Anderluh & Roman Jerala, 2023. "Programmable de novo designed coiled coil-mediated phase separation in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Saumyak Mukherjee & Lars V. Schäfer, 2023. "Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Mrityunjoy Kar & Laura T. Vogel & Gaurav Chauhan & Suren Felekyan & Hannes Ausserwöger & Timothy J. Welsh & Furqan Dar & Anjana R. Kamath & Tuomas P. J. Knowles & Anthony A. Hyman & Claus A. M. Seidel, 2024. "Solutes unmask differences in clustering versus phase separation of FET proteins," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Dolachai Boniface & Sergi G. Leyva & Ignacio Pagonabarraga & Pietro Tierno, 2024. "Clustering induces switching between phoretic and osmotic propulsion in active colloidal rafts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Miriam Linsenmeier & Maria Hondele & Fulvio Grigolato & Eleonora Secchi & Karsten Weis & Paolo Arosio, 2022. "Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Mina Farag & Samuel R. Cohen & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2022. "Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Christian Hoffmann & Jakob Rentsch & Taka A. Tsunoyama & Akshita Chhabra & Gerard Aguilar Perez & Rajdeep Chowdhury & Franziska Trnka & Aleksandr A. Korobeinikov & Ali H. Shaib & Marcelo Ganzella & Gr, 2023. "Synapsin condensation controls synaptic vesicle sequestering and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51840-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.