IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49977-5.html
   My bibliography  Save this article

Clustering induces switching between phoretic and osmotic propulsion in active colloidal rafts

Author

Listed:
  • Dolachai Boniface

    (Universitat de Barcelona)

  • Sergi G. Leyva

    (Universitat de Barcelona
    University of Barcelona Institute of Complex Systems (UBICS))

  • Ignacio Pagonabarraga

    (Universitat de Barcelona
    University of Barcelona Institute of Complex Systems (UBICS))

  • Pietro Tierno

    (Universitat de Barcelona
    University of Barcelona Institute of Complex Systems (UBICS))

Abstract

Active particles driven by chemical reactions are the subject of intense research to date due to their rich physics, being intrinsically far from equilibrium, and their multiple technological applications. Recent attention in this field is now shifting towards exploring the fascinating dynamics of active and passive mixtures. Here we realize active colloidal rafts, composed of a single catalytic particle encircled by several shells of passive microspheres, and assembled via light-activated chemophoresis. We show that the cluster propulsion mechanism transits from diffusiophoretic to diffusioosmotic as the number of colloidal shells increases. Using the Lorentz reciprocal theorem, we demonstrate that in large clusters self-propulsion emerges by considering the hydrodynamic flow via the diffusioosmotic response of the substrate. The dynamics in our active colloidal rafts are governed by the interplay between phoretic and osmotic effects. Thus, our work highlights their importance in understanding the rich physics of active catalytic systems.

Suggested Citation

  • Dolachai Boniface & Sergi G. Leyva & Ignacio Pagonabarraga & Pietro Tierno, 2024. "Clustering induces switching between phoretic and osmotic propulsion in active colloidal rafts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49977-5
    DOI: 10.1038/s41467-024-49977-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49977-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49977-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin K. Rasmussen & Jonas N. Pedersen & Rodolphe Marie, 2020. "Size and surface charge characterization of nanoparticles with a salt gradient," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Juliane Simmchen & Jaideep Katuri & William E. Uspal & Mihail N. Popescu & Mykola Tasinkevych & Samuel Sánchez, 2016. "Topographical pathways guide chemical microswimmers," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    3. Raphael Wittkowski & Adriano Tiribocchi & Joakim Stenhammar & Rosalind J. Allen & Davide Marenduzzo & Michael E. Cates, 2014. "Scalar φ4 field theory for active-particle phase separation," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hantaek Bae, 2020. "Global existence of solutions to some equations modeling phase separation of self-propelled particles," Partial Differential Equations and Applications, Springer, vol. 1(6), pages 1-26, December.
    2. Antonio Lamura & Adriano Tiribocchi, 2021. "Shearing Effects on the Phase Coarsening of Binary Mixtures Using the Active Model B," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    3. Viet Sang Doan & Ibraheem Alshareedah & Anurag Singh & Priya R. Banerjee & Sangwoo Shin, 2024. "Diffusiophoresis promotes phase separation and transport of biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Feng Lin & Xia Li & Shiyu Sun & Zhongyi Li & Chenglin Lv & Jianbo Bai & Lin Song & Yizhao Han & Bo Li & Jianping Fu & Yue Shao, 2023. "Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Kang Zhang & Wen-Si Hu & Quan-Xing Liu, 2020. "Quantitatively Inferring Three Mechanisms from the Spatiotemporal Patterns," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
    6. María J. Esplandiu & David Reguera & Daniel Romero-Guzmán & Amparo M. Gallardo-Moreno & Jordi Fraxedas, 2022. "From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Shuqin Chen & Xander Peetroons & Anna C. Bakenecker & Florencia Lezcano & Igor S. Aranson & Samuel Sánchez, 2024. "Collective buoyancy-driven dynamics in swarming enzymatic nanomotors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Cristóvão S. Dias & Manish Trivedi & Giovanni Volpe & Nuno A. M. Araújo & Giorgio Volpe, 2023. "Environmental memory boosts group formation of clueless individuals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Bae, Hantaek, 2023. "Global existence of unique weak solutions and decay rates of Active model B with the logarithmic Cahn–Hilliard equation in Wiener space," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Stefania Ketzetzi & Melissa Rinaldin & Pim Dröge & Joost de Graaf & Daniela J. Kraft, 2022. "Activity-induced interactions and cooperation of artificial microswimmers in one-dimensional environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Suin Shim & Bernardo Gouveia & Beatrice Ramm & Venecia A. Valdez & Sabine Petry & Howard A. Stone, 2024. "Motorless transport of microtubules along tubulin, RanGTP, and salt gradients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Adérito Fins Carreira & Adam Wysocki & Christophe Ybert & Mathieu Leocmach & Heiko Rieger & Cécile Cottin-Bizonne, 2024. "How to steer active colloids up a vertical wall," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49977-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.