IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47330-4.html
   My bibliography  Save this article

An experimental framework to assess biomolecular condensates in bacteria

Author

Listed:
  • Y Hoang

    (University of Michigan)

  • Christopher A. Azaldegui

    (University of Michigan)

  • Rachel E. Dow

    (University of Michigan)

  • Maria Ghalmi

    (University of Michigan)

  • Julie S. Biteen

    (University of Michigan
    University of Michigan)

  • Anthony G. Vecchiarelli

    (University of Michigan)

Abstract

High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discover that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its potential applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.

Suggested Citation

  • Y Hoang & Christopher A. Azaldegui & Rachel E. Dow & Maria Ghalmi & Julie S. Biteen & Anthony G. Vecchiarelli, 2024. "An experimental framework to assess biomolecular condensates in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47330-4
    DOI: 10.1038/s41467-024-47330-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47330-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47330-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keren Lasker & Steven Boeynaems & Vinson Lam & Daniel Scholl & Emma Stainton & Adam Briner & Maarten Jacquemyn & Dirk Daelemans & Ashok Deniz & Elizabeth Villa & Alex S. Holehouse & Aaron D. Gitler & , 2022. "The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Sophia Ungelenk & Fatemeh Moayed & Chi-Ting Ho & Tomas Grousl & Annette Scharf & Alireza Mashaghi & Sander Tans & Matthias P. Mayer & Axel Mogk & Bernd Bukau, 2016. "Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding," Nature Communications, Nature, vol. 7(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinesh Sundaravadivelu Devarajan & Jiahui Wang & Beata Szała-Mendyk & Shiv Rekhi & Arash Nikoubashman & Young C. Kim & Jeetain Mittal, 2024. "Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Moritz Mühlhofer & Carsten Peters & Thomas Kriehuber & Marina Kreuzeder & Pamina Kazman & Natalia Rodina & Bernd Reif & Martin Haslbeck & Sevil Weinkauf & Johannes Buchner, 2021. "Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Kevin Wu & Thomas C. Minshull & Sheena E. Radford & Antonio N. Calabrese & James C. A. Bardwell, 2022. "Trigger factor both holds and folds its client proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Maruša Ramšak & Dominique A. Ramirez & Loren E. Hough & Michael R. Shirts & Sara Vidmar & Kristina Eleršič Filipič & Gregor Anderluh & Roman Jerala, 2023. "Programmable de novo designed coiled coil-mediated phase separation in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Saumyak Mukherjee & Lars V. Schäfer, 2023. "Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47330-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.