IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43742-w.html
   My bibliography  Save this article

Programmable de novo designed coiled coil-mediated phase separation in mammalian cells

Author

Listed:
  • Maruša Ramšak

    (National Institute of Chemistry
    University of Ljubljana)

  • Dominique A. Ramirez

    (University of Colorado Boulder)

  • Loren E. Hough

    (University of Colorado Boulder)

  • Michael R. Shirts

    (University of Colorado Boulder)

  • Sara Vidmar

    (National Institute of Chemistry
    University of Ljubljana)

  • Kristina Eleršič Filipič

    (National Institute of Chemistry)

  • Gregor Anderluh

    (National Institute of Chemistry)

  • Roman Jerala

    (National Institute of Chemistry)

Abstract

Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations. Through modular design, we achieve multiple coexisting condensates, chemical regulation of LLPS, condensate fusion, formation from either one or two polypeptide components or LLPS regulation by a third polypeptide chain. These findings provide further insights into the principles underlying LLPS formation and a design platform for controlling biological processes.

Suggested Citation

  • Maruša Ramšak & Dominique A. Ramirez & Loren E. Hough & Michael R. Shirts & Sara Vidmar & Kristina Eleršič Filipič & Gregor Anderluh & Roman Jerala, 2023. "Programmable de novo designed coiled coil-mediated phase separation in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43742-w
    DOI: 10.1038/s41467-023-43742-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43742-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43742-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keren Lasker & Steven Boeynaems & Vinson Lam & Daniel Scholl & Emma Stainton & Adam Briner & Maarten Jacquemyn & Dirk Daelemans & Ashok Deniz & Elizabeth Villa & Alex S. Holehouse & Aaron D. Gitler & , 2022. "The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Xiaofeng Fang & Liang Wang & Ryo Ishikawa & Yaoxi Li & Marc Fiedler & Fuquan Liu & Grant Calder & Beth Rowan & Detlef Weigel & Pilong Li & Caroline Dean, 2019. "Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes," Nature, Nature, vol. 569(7755), pages 265-269, May.
    3. Pilong Li & Sudeep Banjade & Hui-Chun Cheng & Soyeon Kim & Baoyu Chen & Liang Guo & Marc Llaguno & Javoris V. Hollingsworth & David S. King & Salman F. Banani & Paul S. Russo & Qiu-Xing Jiang & B. Tra, 2012. "Phase transitions in the assembly of multivalent signalling proteins," Nature, Nature, vol. 483(7389), pages 336-340, March.
    4. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Mengjie Sun & Mingkang Jia & He Ren & Biying Yang & Wangfei Chi & Guangwei Xin & Qing Jiang & Chuanmao Zhang, 2021. "NuMA regulates mitotic spindle assembly, structural dynamics and function via phase separation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    6. Matthew R. King & Sabine Petry, 2020. "Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Beatrice Ramm & Dominik Schumacher & Andrea Harms & Tamara Heermann & Philipp Klos & Franziska Müller & Petra Schwille & Lotte Søgaard-Andersen, 2023. "Biomolecular condensate drives polymerization and bundling of the bacterial tubulin FtsZ to regulate cell division," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    3. Jun Sun & Jiale Qu & Cai Zhao & Xinyao Zhang & Xinyu Liu & Jia Wang & Chao Wei & Xinyi Liu & Mulan Wang & Pengguihang Zeng & Xiuxiao Tang & Xiaoru Ling & Li Qing & Shaoshuai Jiang & Jiahao Chen & Tara, 2024. "Precise prediction of phase-separation key residues by machine learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Shuangcheng Alivia Wu & Chenchen Shen & Xiaoqiong Wei & Xiawei Zhang & Siwen Wang & Xinxin Chen & Mauricio Torres & You Lu & Liangguang Leo Lin & Huilun Helen Wang & Allen H. Hunter & Deyu Fang & Shen, 2023. "The mechanisms to dispose of misfolded proteins in the endoplasmic reticulum of adipocytes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Zheng Shen & Daxiao Sun & Adriana Savastano & Sára Joana Varga & Maria-Sol Cima-Omori & Stefan Becker & Alf Honigmann & Markus Zweckstetter, 2023. "Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Dinesh Sundaravadivelu Devarajan & Jiahui Wang & Beata Szała-Mendyk & Shiv Rekhi & Arash Nikoubashman & Young C. Kim & Jeetain Mittal, 2024. "Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Omar A. Saleh & Sam Wilken & Todd M. Squires & Tim Liedl, 2023. "Vacuole dynamics and popping-based motility in liquid droplets of DNA," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Song Xue & Fan Zhou & Tian Zhao & Huimin Zhao & Xuewei Wang & Long Chen & Jin-ping Li & Shi-Zhong Luo, 2022. "Phase separation on cell surface facilitates bFGF signal transduction with heparan sulphate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Y Hoang & Christopher A. Azaldegui & Rachel E. Dow & Maria Ghalmi & Julie S. Biteen & Anthony G. Vecchiarelli, 2024. "An experimental framework to assess biomolecular condensates in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Cezanne Miete & Gonzalo P. Solis & Alexey Koval & Martina Brückner & Vladimir L. Katanaev & Jürgen Behrens & Dominic B. Bernkopf, 2022. "Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Michelle Lindström & Lihua Chen & Shan Jiang & Dan Zhang & Yuan Gao & Ju Zheng & Xinxin Hao & Xiaoxue Yang & Arpitha Kabbinale & Johannes Thoma & Lisa C. Metzger & Deyuan Y. Zhang & Xuefeng Zhu & Huis, 2022. "Lsm7 phase-separated condensates trigger stress granule formation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Andres R. Tejedor & Ignacio Sanchez-Burgos & Maria Estevez-Espinosa & Adiran Garaizar & Rosana Collepardo-Guevara & Jorge Ramirez & Jorge R. Espinosa, 2022. "Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Anna Rodina & Chao Xu & Chander S. Digwal & Suhasini Joshi & Yogita Patel & Anand R. Santhaseela & Sadik Bay & Swathi Merugu & Aftab Alam & Pengrong Yan & Chenghua Yang & Tanaya Roychowdhury & Palak P, 2023. "Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation," Nature Communications, Nature, vol. 14(1), pages 1-26, December.
    18. Miriam Linsenmeier & Maria Hondele & Fulvio Grigolato & Eleonora Secchi & Karsten Weis & Paolo Arosio, 2022. "Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Mina Farag & Samuel R. Cohen & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2022. "Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Benjamin G Weiner & Andrew G T Pyo & Yigal Meir & Ned S Wingreen, 2021. "Motif-pattern dependence of biomolecular phase separation driven by specific interactions," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43742-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.