IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53656-w.html
   My bibliography  Save this article

Motorless transport of microtubules along tubulin, RanGTP, and salt gradients

Author

Listed:
  • Suin Shim

    (Princeton University)

  • Bernardo Gouveia

    (Princeton University)

  • Beatrice Ramm

    (Princeton University
    Princeton University)

  • Venecia A. Valdez

    (Princeton University)

  • Sabine Petry

    (Princeton University)

  • Howard A. Stone

    (Princeton University)

Abstract

Microtubules are dynamic filaments that assemble spindles for eukaryotic cell division. As the concentration profiles of soluble tubulin and regulatory proteins are non-uniform during spindle assembly, we asked if diffusiophoresis - motion of particles under solute gradients - can act as a motorless transport mechanism for microtubules. We identify the migration of stable microtubules along cytoplasmic and higher concentration gradients of soluble tubulin, MgCl2, Mg-ATP, Mg-GTP, and RanGTP at speeds O(100) nm/s, validating the diffusiophoresis hypothesis. Using two buffers (BRB80 and CSF-XB), microtubule behavior under MgCl2 gradients is compared with negatively charged particles and analyzed with a multi-ion diffusiophoresis and diffusioosmosis model. Microtubule diffusiophoresis under gradients of tubulin and RanGTP is also compared with the charged particles and analyzed with a non-electrolyte diffusiophoresis model. Further, we find that tubulin and RanGTP display concentration dependent cross-diffusion that influences microtubule diffusiophoresis. Finally, using Xenopus laevis egg extract, we show that diffusiophoretic transport occurs in an active cytoplasmic environment.

Suggested Citation

  • Suin Shim & Bernardo Gouveia & Beatrice Ramm & Venecia A. Valdez & Sabine Petry & Howard A. Stone, 2024. "Motorless transport of microtubules along tubulin, RanGTP, and salt gradients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53656-w
    DOI: 10.1038/s41467-024-53656-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53656-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53656-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ju Zhou & Anhui Wang & Yinlong Song & Nan Liu & Jia Wang & Yan Li & Xin Liang & Guohui Li & Huiying Chu & Hong-Wei Wang, 2023. "Structural insights into the mechanism of GTP initiation of microtubule assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Beatrice Ramm & Philipp Glock & Jonas Mücksch & Philipp Blumhardt & Daniela A. García-Soriano & Michael Heymann & Petra Schwille, 2018. "The MinDE system is a generic spatial cue for membrane protein distribution in vitro," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    3. Martin K. Rasmussen & Jonas N. Pedersen & Rodolphe Marie, 2020. "Size and surface charge characterization of nanoparticles with a salt gradient," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Ekta Shandilya & Bhargav Rallabandi & Subhabrata Maiti, 2024. "In situ enzymatic control of colloidal phoresis and catalysis through hydrolysis of ATP," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet Sang Doan & Ibraheem Alshareedah & Anurag Singh & Priya R. Banerjee & Sangwoo Shin, 2024. "Diffusiophoresis promotes phase separation and transport of biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Shunshi Kohyama & Adrián Merino-Salomón & Petra Schwille, 2022. "In vitro assembly, positioning and contraction of a division ring in minimal cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Dolachai Boniface & Sergi G. Leyva & Ignacio Pagonabarraga & Pietro Tierno, 2024. "Clustering induces switching between phoretic and osmotic propulsion in active colloidal rafts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53656-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.