IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34196-7.html
   My bibliography  Save this article

Flexible hyperspectral surface plasmon resonance microscopy

Author

Listed:
  • Ziwei Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jingning Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chen Cai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bo Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhi-mei Qi

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Optical techniques for visualization and quantification of chemical and biological analytes are always highly desirable. Here we show a hyperspectral surface plasmon resonance microscopy (HSPRM) system that uses a hyperspectral microscope to analyze the selected area of SPR image produced by a prism-based spectral SPR sensor. The HSPRM system enables monochromatic and polychromatic SPR imaging and single-pixel spectral SPR sensing, as well as two-dimensional quantification of thin films with the measured resonance-wavelength images. We performed pixel-by-pixel calibration of the incident angle to remove pixel-to-pixel differences in SPR sensitivity, and demonstrated the HSPRM’s capabilities by using it to quantify monolayer graphene thickness distribution, inhomogeneous protein adsorption and single-cell adhesion. The HSPRM system has a wide spectral range from 400 nm to 1000 nm, an optional field of view from 0.884 mm2 to 0.003 mm2 and a high lateral resolution of 1.2 μm, demonstrating an innovative breakthrough in SPR sensor technology.

Suggested Citation

  • Ziwei Liu & Jingning Wu & Chen Cai & Bo Yang & Zhi-mei Qi, 2022. "Flexible hyperspectral surface plasmon resonance microscopy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34196-7
    DOI: 10.1038/s41467-022-34196-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34196-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34196-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guangzhong Ma & Runli Liang & Zijian Wan & Shaopeng Wang, 2021. "Critical angle reflection imaging for quantification of molecular interactions on glass surface," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Iban Amenabar & Simon Poly & Monika Goikoetxea & Wiwat Nuansing & Peter Lasch & Rainer Hillenbrand, 2017. "Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    3. Liang-Jin Xu & Xinsong Lin & Qingquan He & Michael Worku & Biwu Ma, 2020. "Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailei Zhang & Bo Zhang & Chongyang Cai & Kaiming Zhang & Yu Wang & Yuan Wang & Yanmin Yang & Yonggang Wu & Xinwu Ba & Richard Hoogenboom, 2024. "Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Enhai Song & Meihua Chen & Zitao Chen & Yayun Zhou & Weijie Zhou & Hong-Tao Sun & Xianfeng Yang & Jiulin Gan & Shi Ye & Qinyuan Zhang, 2022. "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xuezhi Ma & Qiushi Liu & Ning Yu & Da Xu & Sanggon Kim & Zebin Liu & Kaili Jiang & Bryan M. Wong & Ruoxue Yan & Ming Liu, 2021. "6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34196-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.