IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp1-8.html
   My bibliography  Save this article

High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes

Author

Listed:
  • Burmistrov, Igor
  • Gorshkov, Nikolay
  • Kovyneva, Natalya
  • Kolesnikov, Evgeny
  • Khaidarov, Bekzod
  • Karunakaran, Gopalu
  • Cho, Eun-Bum
  • Kiselev, Nikolay
  • Artyukhov, Denis
  • Kuznetsov, Denis
  • Gorokhovsky, Alexander

Abstract

High-performance harvesting of waste heat energy and its conversion into electric energy via thermo-electrochemical cells is an essential strategy of renewable energy development. Even though there is a large amount of scientific research available, but due to expensive electrode materials and low efficiency, the thermo-electrochemical cells have not found practical application. Here we demonstrated thermo-electrochemical cell with nickel (Ni) hollow microspheres-based electrodes, provided the highest hypothetical Seebeck coefficient of 4.5 mV/K (for aqueous electrolyte based thermocells) until today and open-circuit voltage values of up to 0.2 V. High values of Seebeck coefficient provide the ability to collect low-temperature heat, and high output potential differences which allow to fabricate batteries for commercial power circuits for various microelectronic devices. This work also proposed a mechanism and science behind the electrode processes, which explains a extremely high values of the hypothetical Seebeck coefficient. This is the first time to use Ni hollow microsphere in thermo-electrochemical cell for heat harvesting and thermal energy conversion into electricity. Because of the low cost of Ni microspheres electrode-based developed thermo cells could be commercially feasible for harvesting low-quality thermal energy.

Suggested Citation

  • Burmistrov, Igor & Gorshkov, Nikolay & Kovyneva, Natalya & Kolesnikov, Evgeny & Khaidarov, Bekzod & Karunakaran, Gopalu & Cho, Eun-Bum & Kiselev, Nikolay & Artyukhov, Denis & Kuznetsov, Denis & Gorokh, 2020. "High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes," Renewable Energy, Elsevier, vol. 157(C), pages 1-8.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1-8
    DOI: 10.1016/j.renene.2020.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyeongwook Im & Taewoo Kim & Hyelynn Song & Jongho Choi & Jae Sung Park & Raquel Ovalle-Robles & Hee Doo Yang & Kenneth D. Kihm & Ray H. Baughman & Hong H. Lee & Tae June Kang & Yong Hyup Kim, 2016. "High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    2. Jiangjiang Duan & Guang Feng & Boyang Yu & Jia Li & Ming Chen & Peihua Yang & Jiamao Feng & Kang Liu & Jun Zhou, 2018. "Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Artyukhov & Nikolay Gorshkov & Maria Vikulova & Nikolay Kiselev & Artem Zemtsov & Ivan Artyukhov, 2022. "Power Supply of Wireless Sensors Based on Energy Conversion of Separated Gas Flows by Thermoelectrochemical Cells," Energies, MDPI, vol. 15(4), pages 1-16, February.
    2. Fatih Selimefendigil & Damla Okulu & Hakan F. Öztop, 2023. "Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law-Nanofluid-Assisted Cooling Channel," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    3. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    4. Denis Artyukhov & Nikolay Kiselev & Nikolay Gorshkov & Natalya Kovyneva & Olga Ganzha & Maria Vikulova & Alexander Gorokhovsky & Peter Offor & Elena Boychenko & Igor Burmistrov, 2021. "Harvesting Waste Thermal Energy Using a Surface-Modified Carbon Fiber-Based Thermo-Electrochemical Cell," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    5. Demir, Hasan, 2024. "Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Artyukhov & Nikolay Gorshkov & Maria Vikulova & Nikolay Kiselev & Artem Zemtsov & Ivan Artyukhov, 2022. "Power Supply of Wireless Sensors Based on Energy Conversion of Separated Gas Flows by Thermoelectrochemical Cells," Energies, MDPI, vol. 15(4), pages 1-16, February.
    2. Jung, Sang-Mun & Kwon, Jaesub & Lee, Jinhyeon & Lee, Byung-Jo & Kim, Kyu-Su & Yu, Dong-Seok & Kim, Yong-Tae, 2021. "Hybrid thermo-electrochemical energy harvesters for conversion of low-grade thermal energy into electricity via tungsten electrodes," Applied Energy, Elsevier, vol. 299(C).
    3. Isuru E. Gunathilaka & Jennifer M. Pringle & Luke A. O’Dell, 2021. "Operando magnetic resonance imaging for mapping of temperature and redox species in thermo-electrochemical cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    5. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Shucheng Wang & Liuyang Han & Hanxiao Liu & Ying Dong & Xiaohao Wang, 2022. "Ionic Gelatin-Based Flexible Thermoelectric Generator with Scalability for Human Body Heat Harvesting," Energies, MDPI, vol. 15(9), pages 1-18, May.
    7. Jinpei Wang & Yuxin Song & Fanfei Yu & Yijun Zeng & Chenyang Wu & Xuezhi Qin & Liang Peng & Yitan Li & Yongsen Zhou & Ran Tao & Hangchen Liu & Hong Zhu & Ming Sun & Wanghuai Xu & Chao Zhang & Zuankai , 2024. "Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    9. Zhong, Fanghao & Liu, Zhuo & Zhao, Shuqi & Ai, Tianchao & Zou, Haoyu & Qu, Ming & Wei, Xiang & Song, Yangfan & Chen, Hongwei, 2024. "A novel concentrated photovoltaic and ionic thermocells hybrid system for full-spectrum solar cascade utilization," Applied Energy, Elsevier, vol. 363(C).
    10. Sha, Yingyin & Tang, Xin & Cuce, Erdem & Li, Guiqiang & Zhao, Xudong, 2024. "Parametric optimization for enhancing the electrical performance of hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Energy, Elsevier, vol. 307(C).
    11. Lianhui Li & Sijia Feng & Yuanyuan Bai & Xianqing Yang & Mengyuan Liu & Mingming Hao & Shuqi Wang & Yue Wu & Fuqin Sun & Zheng Liu & Ting Zhang, 2022. "Enhancing hydrovoltaic power generation through heat conduction effects," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Shuaihua Wang & Yuchen Li & Mao Yu & Qikai Li & Huan Li & Yupeng Wang & Jiajia Zhang & Kang Zhu & Weishu Liu, 2024. "High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Denis Artyukhov & Nikolay Kiselev & Nikolay Gorshkov & Natalya Kovyneva & Olga Ganzha & Maria Vikulova & Alexander Gorokhovsky & Peter Offor & Elena Boychenko & Igor Burmistrov, 2021. "Harvesting Waste Thermal Energy Using a Surface-Modified Carbon Fiber-Based Thermo-Electrochemical Cell," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    14. Jiafu Shen & Xi Huang & Yu Dai & Xiaojin Zhang & Fan Xia, 2024. "N-type and P-type series integrated hydrogel thermoelectric cells for low-grade heat harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).
    16. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    17. Shi, Yu & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang & Zhang, Yongsheng, 2020. "Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity," Renewable Energy, Elsevier, vol. 159(C), pages 162-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.