Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128577
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dawahdeh, Ahmad I. & Al-Nimr, Moh'd A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a biofuel stove," Energy, Elsevier, vol. 251(C).
- Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
- Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
- Zhang, Yue & Deng, Shuai & Zhao, Li & Nie, Xianhua & Xu, Weicong & He, Junnan, 2020. "Exploring a potential application of hydrate separation for composition adjustable combined cooling and power system," Applied Energy, Elsevier, vol. 268(C).
- Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
- Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "A contemporary description of the Carnot cycle featured by chemical work from equilibrium: The electrochemical Carnot cycle," Energy, Elsevier, vol. 280(C).
- Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
- Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
- Jiangjiang Duan & Guang Feng & Boyang Yu & Jia Li & Ming Chen & Peihua Yang & Jiamao Feng & Kang Liu & Jun Zhou, 2018. "Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
- Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
- Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
- Seok Woo Lee & Yuan Yang & Hyun-Wook Lee & Hadi Ghasemi & Daniel Kraemer & Gang Chen & Yi Cui, 2014. "An electrochemical system for efficiently harvesting low-grade heat energy," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
- Li, Yung-Ming & Hung, Tzu-Chen & Wu, Chia-Jung & Su, Ting-Ying & Xi, Huan & Wang, Chi-Chuan, 2021. "Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment," Energy, Elsevier, vol. 217(C).
- Xun Wang & Yu-Ting Huang & Chang Liu & Kaiyu Mu & Ka Ho Li & Sijia Wang & Yuan Yang & Lei Wang & Chia-Hung Su & Shien-Ping Feng, 2019. "Direct thermal charging cell for converting low-grade heat to electricity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
- Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
- Aravindh Rajan & Ian S. McKay & Shannon K. Yee, 2022. "Continuous electrochemical refrigeration based on the Brayton cycle," Nature Energy, Nature, vol. 7(4), pages 320-328, April.
- Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
- Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
- Yoon, Jung-In & Seol, Sung-Hoon & Son, Chang-Hyo & Jung, Suk-Ho & Kim, Young-Bok & Lee, Ho-Saeng & Kim, Hyeon-Ju & Moon, Jung-Hyun, 2017. "Analysis of the high-efficiency EP-OTEC cycle using R152a," Renewable Energy, Elsevier, vol. 105(C), pages 366-373.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "A contemporary description of the Carnot cycle featured by chemical work from equilibrium: The electrochemical Carnot cycle," Energy, Elsevier, vol. 280(C).
- Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
- Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
- Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
- Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
- Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
- Huang, Yisheng & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2022. "Performance explorations of an organic Rankine cycle featured with separating and mixing composition of zeotropic mixture," Energy, Elsevier, vol. 257(C).
- Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
- Shi, Yu & Li, Yanxiang & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2022. "Development of a membrane-less microfluidic thermally regenerative ammonia-based battery towards small-scale low-grade thermal energy recovery," Applied Energy, Elsevier, vol. 326(C).
- Jung, Sang-Mun & Kwon, Jaesub & Lee, Jinhyeon & Lee, Byung-Jo & Kim, Kyu-Su & Yu, Dong-Seok & Kim, Yong-Tae, 2021. "Hybrid thermo-electrochemical energy harvesters for conversion of low-grade thermal energy into electricity via tungsten electrodes," Applied Energy, Elsevier, vol. 299(C).
- Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
- Jaeho Yoon & Hanhwi Jang & Min-Wook Oh & Thomas Hilberath & Frank Hollmann & Yeon Sik Jung & Chan Beum Park, 2022. "Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Tong, Xin & Liu, Su & Yan, Junchen & Broesicke, Osvaldo A. & Chen, Yongsheng & Crittenden, John, 2020. "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration," Applied Energy, Elsevier, vol. 259(C).
- Jinpei Wang & Yuxin Song & Fanfei Yu & Yijun Zeng & Chenyang Wu & Xuezhi Qin & Liang Peng & Yitan Li & Yongsen Zhou & Ran Tao & Hangchen Liu & Hong Zhu & Ming Sun & Wanghuai Xu & Chao Zhang & Zuankai , 2024. "Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system," Energy, Elsevier, vol. 171(C), pages 611-623.
- Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
- Yan Gao & Qianxi Song & Wen Su & Xinxing Lin & Zhi Sun & Zhisheng Huang & Yaping Gao, 2023. "Experimentally Identifying the Influences of Key Parameters for an Organic Rankine Cycle Using R123," Sustainability, MDPI, vol. 15(1), pages 1-14, January.
More about this item
Keywords
Low-grade heat harvesting; Quasi-Carnot cycle; Thermally regenerative electrochemical cycle; Electrochemical Brayton cycle; Exergy analysis; Thermodynamic cycle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019710. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.