IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45432-7.html
   My bibliography  Save this article

High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy

Author

Listed:
  • Shuaihua Wang

    (Southern University of Science and Technology)

  • Yuchen Li

    (Southern University of Science and Technology)

  • Mao Yu

    (Southern University of Science and Technology)

  • Qikai Li

    (Southern University of Science and Technology)

  • Huan Li

    (Southern University of Science and Technology)

  • Yupeng Wang

    (Southern University of Science and Technology)

  • Jiajia Zhang

    (Southern University of Science and Technology)

  • Kang Zhu

    (Southern University of Science and Technology)

  • Weishu Liu

    (Southern University of Science and Technology)

Abstract

Ionic thermoelectric (i-TE) liquid cells offer an environmentally friendly, cost effective, and easy-operation route to low-grade heat recovery. However, the lowest temperature is limited by the freezing temperature of the aqueous electrolyte. Applying a eutectic solvent strategy, we fabricate a high-performance cryo-temperature i-TE liquid cell. Formamide is used as a chaotic organic solvent that destroys the hydrogen bond network between water molecules, forming a deep eutectic solvent that enables the cell to operate near cryo temperatures (down to –35 °C). After synergistic optimization of the electrode and cell structure, the as-fabricated liquid i-TE cell with cold (–35 °C) and hot (70 °C) ends achieve a high power density (17.5 W m−2) and a large two-hour energy density (27 kJ m−2). In a prototype 25-cell module, the open-circuit voltage and short-circuit current are 6.9 V and 68 mA, respectively, and the maximum power is 131 mW. The anti-freezing ability and high output performance of the as-fabricated i-TE liquid cell system are requisites for applications in frigid regions.

Suggested Citation

  • Shuaihua Wang & Yuchen Li & Mao Yu & Qikai Li & Huan Li & Yupeng Wang & Jiajia Zhang & Kang Zhu & Weishu Liu, 2024. "High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45432-7
    DOI: 10.1038/s41467-024-45432-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45432-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45432-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masakazu Matsumoto & Shinji Saito & Iwao Ohmine, 2002. "Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing," Nature, Nature, vol. 416(6879), pages 409-413, March.
    2. Jiangjiang Duan & Guang Feng & Boyang Yu & Jia Li & Ming Chen & Peihua Yang & Jiamao Feng & Kang Liu & Jun Zhou, 2018. "Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinpei Wang & Yuxin Song & Fanfei Yu & Yijun Zeng & Chenyang Wu & Xuezhi Qin & Liang Peng & Yitan Li & Yongsen Zhou & Ran Tao & Hangchen Liu & Hong Zhu & Ming Sun & Wanghuai Xu & Chao Zhang & Zuankai , 2024. "Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    2. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Burmistrov, Igor & Gorshkov, Nikolay & Kovyneva, Natalya & Kolesnikov, Evgeny & Khaidarov, Bekzod & Karunakaran, Gopalu & Cho, Eun-Bum & Kiselev, Nikolay & Artyukhov, Denis & Kuznetsov, Denis & Gorokh, 2020. "High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes," Renewable Energy, Elsevier, vol. 157(C), pages 1-8.
    4. Denis Artyukhov & Nikolay Gorshkov & Maria Vikulova & Nikolay Kiselev & Artem Zemtsov & Ivan Artyukhov, 2022. "Power Supply of Wireless Sensors Based on Energy Conversion of Separated Gas Flows by Thermoelectrochemical Cells," Energies, MDPI, vol. 15(4), pages 1-16, February.
    5. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jung, Sang-Mun & Kwon, Jaesub & Lee, Jinhyeon & Lee, Byung-Jo & Kim, Kyu-Su & Yu, Dong-Seok & Kim, Yong-Tae, 2021. "Hybrid thermo-electrochemical energy harvesters for conversion of low-grade thermal energy into electricity via tungsten electrodes," Applied Energy, Elsevier, vol. 299(C).
    7. Wei Wang & Shan Chen & Xuelong Liao & Rong Huang & Fengmei Wang & Jialei Chen & Yaxin Wang & Fei Wang & Huan Wang, 2023. "Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Cheolhee Yang & Marjorie Ladd-Parada & Kyeongmin Nam & Sangmin Jeong & Seonju You & Alexander Späh & Harshad Pathak & Tobias Eklund & Thomas J. Lane & Jae Hyuk Lee & Intae Eom & Minseok Kim & Katrin A, 2023. "Melting domain size and recrystallization dynamics of ice revealed by time-resolved x-ray scattering," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Stanley, H.Eugene & Buldyrev, Sergey V. & Giovambattista, Nicolas, 2004. "Static heterogeneities in liquid water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 40-47.
    10. Jinpei Wang & Yuxin Song & Fanfei Yu & Yijun Zeng & Chenyang Wu & Xuezhi Qin & Liang Peng & Yitan Li & Yongsen Zhou & Ran Tao & Hangchen Liu & Hong Zhu & Ming Sun & Wanghuai Xu & Chao Zhang & Zuankai , 2024. "Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Zhong, Fanghao & Liu, Zhuo & Zhao, Shuqi & Ai, Tianchao & Zou, Haoyu & Qu, Ming & Wei, Xiang & Song, Yangfan & Chen, Hongwei, 2024. "A novel concentrated photovoltaic and ionic thermocells hybrid system for full-spectrum solar cascade utilization," Applied Energy, Elsevier, vol. 363(C).
    12. Hamed Almohammadi & Sandra Martinek & Ye Yuan & Peter Fischer & Raffaele Mezzenga, 2023. "Disentangling kinetics from thermodynamics in heterogeneous colloidal systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Isuru E. Gunathilaka & Jennifer M. Pringle & Luke A. O’Dell, 2021. "Operando magnetic resonance imaging for mapping of temperature and redox species in thermo-electrochemical cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Denis Artyukhov & Nikolay Kiselev & Nikolay Gorshkov & Natalya Kovyneva & Olga Ganzha & Maria Vikulova & Alexander Gorokhovsky & Peter Offor & Elena Boychenko & Igor Burmistrov, 2021. "Harvesting Waste Thermal Energy Using a Surface-Modified Carbon Fiber-Based Thermo-Electrochemical Cell," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    15. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).
    16. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45432-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.