IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012338.html
   My bibliography  Save this article

Development of a membrane-less microfluidic thermally regenerative ammonia-based battery towards small-scale low-grade thermal energy recovery

Author

Listed:
  • Shi, Yu
  • Li, Yanxiang
  • Zhang, Liang
  • Li, Jun
  • Fu, Qian
  • Zhu, Xun
  • Liao, Qiang

Abstract

Developing low-cost and simple thermally regenerative ammonia-based batteries is a promising method to harvest low-grade waste heat. This paper proposes a membrane-less microfluidic thermally regenerative ammonia-based battery (M-TRAB) for harvesting low-grade waste heat. A liquid–liquid interface is developed by flowing co-laminar streams of anolyte and catholyte in a microchannel. It can replace the anion exchange membrane for separating reactants. A M-TRAB with a flow rate of 1500 μL min−1 obtains the maximum power density of 27 W m−2. The stable output voltage is generated with different flow rates, and the maximum theoretical thermal energy efficiency can reach 1.3% (the relative Carnot efficiency is 14.9%). And the influences of the microchannel length and NH3 concentration on the performance are investigated. Moreover, based on the lower density of anolyte than catholyte, a novel upward-anode structure forms a clearer interface, and almost non-existent ammonia-crossover occurs, especially in a tapered channel. And a maximum power density of 54.8 W m−2 is obtained. It indicates that the low-cost M-TRAB is a potential choice for assistant cooling in small systems.

Suggested Citation

  • Shi, Yu & Li, Yanxiang & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2022. "Development of a membrane-less microfluidic thermally regenerative ammonia-based battery towards small-scale low-grade thermal energy recovery," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012338
    DOI: 10.1016/j.apenergy.2022.119976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Hongyou & Price, Lynn & Zhang, Qi, 2016. "Capturing the invisible resource: Analysis of waste heat potential in Chinese industry," Applied Energy, Elsevier, vol. 161(C), pages 497-511.
    2. Shi, Yu & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang & Zhang, Yongsheng, 2020. "Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity," Renewable Energy, Elsevier, vol. 159(C), pages 162-171.
    3. Kwok, Y.H. & Wang, Y.F. & Tsang, Alpha C.H. & Leung, Dennis Y.C., 2018. "Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell," Applied Energy, Elsevier, vol. 217(C), pages 258-265.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Xun Wang & Yu-Ting Huang & Chang Liu & Kaiyu Mu & Ka Ho Li & Sijia Wang & Yuan Yang & Lei Wang & Chia-Hung Su & Shien-Ping Feng, 2019. "Direct thermal charging cell for converting low-grade heat to electricity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    6. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2017. "A high performance dual electrolyte microfluidic reactor for the utilization of CO2," Applied Energy, Elsevier, vol. 194(C), pages 549-559.
    7. Anthony P. Straub & Ngai Yin Yip & Shihong Lin & Jongho Lee & Menachem Elimelech, 2016. "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
    8. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Yichao & Zhang, Yongsheng & Shi, Yu & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2023. "Alleviated ammonia crossover in thermally regenerative ammonia-based batteries by optimizing the introduced intermediate-chamber," Applied Energy, Elsevier, vol. 349(C).
    2. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    3. Shi, Yu & Li, Dong & An, Yichao & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2023. "Power generation enhancement of a membrane-free thermally regenerative battery induced by the density difference of electrolytes," Applied Energy, Elsevier, vol. 344(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yu & An, Yichao & Tang, Zhiqiang & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2022. "Electrical power production of thermally regenerative ammonia-based batteries using reduced graphene oxide modified Ni foam composite electrodes," Applied Energy, Elsevier, vol. 326(C).
    2. Jaeho Yoon & Hanhwi Jang & Min-Wook Oh & Thomas Hilberath & Frank Hollmann & Yeon Sik Jung & Chan Beum Park, 2022. "Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    4. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).
    5. Zhang, Chuan & Romagnoli, Alessandro & Kim, Je Young & Azli, Anis Athirah Mohd & Rajoo, Srithar & Lindsay, Andrew, 2017. "Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts," Energy Policy, Elsevier, vol. 106(C), pages 525-535.
    6. Shi, Yu & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang & Zhang, Yongsheng, 2020. "Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity," Renewable Energy, Elsevier, vol. 159(C), pages 162-171.
    7. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    8. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    9. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    10. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    11. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    12. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    14. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    15. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    16. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    17. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    18. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    19. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    20. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.