IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07625-9.html
   My bibliography  Save this article

Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest

Author

Listed:
  • Jiangjiang Duan

    (Huazhong University of Science and Technology)

  • Guang Feng

    (Huazhong University of Science and Technology)

  • Boyang Yu

    (Huazhong University of Science and Technology)

  • Jia Li

    (Huazhong University of Science and Technology)

  • Ming Chen

    (Huazhong University of Science and Technology)

  • Peihua Yang

    (Huazhong University of Science and Technology)

  • Jiamao Feng

    (Huazhong University of Science and Technology)

  • Kang Liu

    (Huazhong University of Science and Technology)

  • Jun Zhou

    (Huazhong University of Science and Technology)

Abstract

Thermogalvanic cells offer a cheap, flexible and scalable route for directly converting heat into electricity. However, achieving a high output voltage and power performance simultaneously from low-grade thermal energy remains challenging. Here, we introduce strong chaotropic cations (guanidinium) and highly soluble amide derivatives (urea) into aqueous ferri/ferrocyanide ([Fe(CN)6]4−/[Fe(CN)6]3−) electrolytes to significantly boost their thermopowers. The corresponding Seebeck coefficient and temperature-insensitive power density simultaneously increase from 1.4 to 4.2 mV K−1 and from 0.4 to 1.1 mW K−2 m−2, respectively. The results reveal that guanidinium and urea synergistically enlarge the entropy difference of the redox couple and significantly increase the Seebeck effect. As a demonstration, we design a prototype module that generates a high open-circuit voltage of 3.4 V at a small temperature difference of 18 K. This thermogalvanic cell system, which features high Seebeck coefficient and low cost, holds promise for the efficient harvest of low-grade thermal energy.

Suggested Citation

  • Jiangjiang Duan & Guang Feng & Boyang Yu & Jia Li & Ming Chen & Peihua Yang & Jiamao Feng & Kang Liu & Jun Zhou, 2018. "Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07625-9
    DOI: 10.1038/s41467-018-07625-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07625-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07625-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isuru E. Gunathilaka & Jennifer M. Pringle & Luke A. O’Dell, 2021. "Operando magnetic resonance imaging for mapping of temperature and redox species in thermo-electrochemical cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    3. Denis Artyukhov & Nikolay Gorshkov & Maria Vikulova & Nikolay Kiselev & Artem Zemtsov & Ivan Artyukhov, 2022. "Power Supply of Wireless Sensors Based on Energy Conversion of Separated Gas Flows by Thermoelectrochemical Cells," Energies, MDPI, vol. 15(4), pages 1-16, February.
    4. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    5. Shuaihua Wang & Yuchen Li & Mao Yu & Qikai Li & Huan Li & Yupeng Wang & Jiajia Zhang & Kang Zhu & Weishu Liu, 2024. "High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Zhong, Fanghao & Liu, Zhuo & Zhao, Shuqi & Ai, Tianchao & Zou, Haoyu & Qu, Ming & Wei, Xiang & Song, Yangfan & Chen, Hongwei, 2024. "A novel concentrated photovoltaic and ionic thermocells hybrid system for full-spectrum solar cascade utilization," Applied Energy, Elsevier, vol. 363(C).
    7. Denis Artyukhov & Nikolay Kiselev & Nikolay Gorshkov & Natalya Kovyneva & Olga Ganzha & Maria Vikulova & Alexander Gorokhovsky & Peter Offor & Elena Boychenko & Igor Burmistrov, 2021. "Harvesting Waste Thermal Energy Using a Surface-Modified Carbon Fiber-Based Thermo-Electrochemical Cell," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    8. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Jung, Sang-Mun & Kwon, Jaesub & Lee, Jinhyeon & Lee, Byung-Jo & Kim, Kyu-Su & Yu, Dong-Seok & Kim, Yong-Tae, 2021. "Hybrid thermo-electrochemical energy harvesters for conversion of low-grade thermal energy into electricity via tungsten electrodes," Applied Energy, Elsevier, vol. 299(C).
    10. Jiafu Shen & Xi Huang & Yu Dai & Xiaojin Zhang & Fan Xia, 2024. "N-type and P-type series integrated hydrogel thermoelectric cells for low-grade heat harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).
    12. Burmistrov, Igor & Gorshkov, Nikolay & Kovyneva, Natalya & Kolesnikov, Evgeny & Khaidarov, Bekzod & Karunakaran, Gopalu & Cho, Eun-Bum & Kiselev, Nikolay & Artyukhov, Denis & Kuznetsov, Denis & Gorokh, 2020. "High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes," Renewable Energy, Elsevier, vol. 157(C), pages 1-8.
    13. Jinpei Wang & Yuxin Song & Fanfei Yu & Yijun Zeng & Chenyang Wu & Xuezhi Qin & Liang Peng & Yitan Li & Yongsen Zhou & Ran Tao & Hangchen Liu & Hong Zhu & Ming Sun & Wanghuai Xu & Chao Zhang & Zuankai , 2024. "Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07625-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.