IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39983-4.html
   My bibliography  Save this article

A general model-based causal inference method overcomes the curse of synchrony and indirect effect

Author

Listed:
  • Se Ho Park

    (University of Wisconsin-Madison
    Institute for Basic Science)

  • Seokmin Ha

    (Institute for Basic Science
    KAIST)

  • Jae Kyoung Kim

    (Institute for Basic Science
    KAIST)

Abstract

To identify causation, model-free inference methods, such as Granger Causality, have been widely used due to their flexibility. However, they have difficulty distinguishing synchrony and indirect effects from direct causation, leading to false predictions. To overcome this, model-based inference methods that test the reproducibility of data with a specific mechanistic model to infer causality were developed. However, they can only be applied to systems described by a specific model, greatly limiting their applicability. Here, we address this limitation by deriving an easily testable condition for a general monotonic ODE model to reproduce time-series data. We built a user-friendly computational package, General ODE-Based Inference (GOBI), which is applicable to nearly any monotonic system with positive and negative regulations described by ODE. GOBI successfully inferred positive and negative regulations in various networks at both the molecular and population levels, unlike existing model-free methods. Thus, this accurate and broadly applicable inference method is a powerful tool for understanding complex dynamical systems.

Suggested Citation

  • Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39983-4
    DOI: 10.1038/s41467-023-39983-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39983-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39983-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arya Pourzanjani & Erik D Herzog & Linda R Petzold, 2015. "On the Inference of Functional Circadian Networks Using Granger Causality," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    2. Zhao Chen & Yang Liu & Hao Sun, 2021. "Physics-informed learning of governing equations from scarce data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Lukas Aufinger & Johann Brenner & Friedrich C. Simmel, 2022. "Complex dynamics in a synchronized cell-free genetic clock," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Siyang Leng & Huanfei Ma & Jürgen Kurths & Ying-Cheng Lai & Wei Lin & Kazuyuki Aihara & Luonan Chen, 2020. "Partial cross mapping eliminates indirect causal influences," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Xiaoyu Xie & Arash Samaei & Jiachen Guo & Wing Kam Liu & Zhengtao Gan, 2022. "Data-driven discovery of dimensionless numbers and governing laws from scarce measurements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    7. Jamshid Pirgazi & Ali Reza Khanteymoori, 2018. "A robust gene regulatory network inference method base on Kalman filter and linear regression," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-17, July.
    8. Jakob Runge & Sebastian Bathiany & Erik Bollt & Gustau Camps-Valls & Dim Coumou & Ethan Deyle & Clark Glymour & Marlene Kretschmer & Miguel D. Mahecha & Jordi Muñoz-Marí & Egbert H. Nes & Jonas Peters, 2019. "Inferring causation from time series in Earth system sciences," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    9. Laurent Potvin-Trottier & Nathan D. Lord & Glenn Vinnicombe & Johan Paulsson, 2016. "Synchronous long-term oscillations in a synthetic gene circuit," Nature, Nature, vol. 538(7626), pages 514-517, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakob Runge, 2023. "Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    2. Jung Hun Park & Gábor Holló & Yolanda Schaerli, 2024. "From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    5. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).
    6. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    7. Ding Yongmei & Li Yulian, 2024. "Causal Linkage Effect on Chinese Industries via Partial Cross Mapping Under the Background of COVID-19," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1071-1094, March.
    8. Bingbo Gao & Jianyu Yang & Ziyue Chen & George Sugihara & Manchun Li & Alfred Stein & Mei-Po Kwan & Jinfeng Wang, 2023. "Causal inference from cross-sectional earth system data with geographical convergent cross mapping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Alireza Yazdani & Lu Lu & Maziar Raissi & George Em Karniadakis, 2020. "Systems biology informed deep learning for inferring parameters and hidden dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-19, November.
    10. Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
    11. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Zhang, Xiaoxia & Guan, Junsheng & Liu, Yanjun & Wang, Guoyin, 2024. "MORL4PDEs: Data-driven discovery of PDEs based on multi-objective optimization and reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. James Ming Chen & Predrag Bejaković & Nika Šimurina, 2024. "Tax and Policy Drivers of Personal Overindebtedness in the European Union," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 30(2), pages 115-133, May.
    14. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    15. Dimitrios V Vavoulis & Volko A Straub & John A D Aston & Jianfeng Feng, 2012. "A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-1, March.
    16. Kunxiaojia Yuan & Fa Li & Gavin McNicol & Min Chen & Alison Hoyt & Sara Knox & William J. Riley & Robert Jackson & Qing Zhu, 2024. "Boreal–Arctic wetland methane emissions modulated by warming and vegetation activity," Nature Climate Change, Nature, vol. 14(3), pages 282-288, March.
    17. Fuaada Mohd Siam & Muhamad Hanis Nasir, 2019. "Comparison of parameter fitting on the model of irradiation effects on bystander cells between Nelder-Mead simplex and particle swarm optimization," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 5(3), pages 142-150.
    18. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Sungho Shin & Ophelia S Venturelli & Victor M Zavala, 2019. "Scalable nonlinear programming framework for parameter estimation in dynamic biological system models," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-29, March.
    20. Lukas Aufinger & Johann Brenner & Friedrich C. Simmel, 2022. "Complex dynamics in a synchronized cell-free genetic clock," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39983-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.