IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37392-1.html
   My bibliography  Save this article

Predictive and robust gene selection for spatial transcriptomics

Author

Listed:
  • Ian Covert

    (University of Washington)

  • Rohan Gala

    (Allen Institute for Brain Science)

  • Tim Wang

    (HHMI Janelia Research Campus)

  • Karel Svoboda

    (HHMI Janelia Research Campus
    Allen Institute for Neural Dynamics)

  • Uygar Sümbül

    (Allen Institute for Brain Science)

  • Su-In Lee

    (University of Washington)

Abstract

A prominent trend in single-cell transcriptomics is providing spatial context alongside a characterization of each cell’s molecular state. This typically requires targeting an a priori selection of genes, often covering less than 1% of the genome, and a key question is how to optimally determine the small gene panel. We address this challenge by introducing a flexible deep learning framework, PERSIST, to identify informative gene targets for spatial transcriptomics studies by leveraging reference scRNA-seq data. Using datasets spanning different brain regions, species, and scRNA-seq technologies, we show that PERSIST reliably identifies panels that provide more accurate prediction of the genome-wide expression profile, thereby capturing more information with fewer genes. PERSIST can be adapted to specific biological goals, and we demonstrate that PERSIST’s binarization of gene expression levels enables models trained on scRNA-seq data to generalize with to spatial transcriptomics data, despite the complex shift between these technologies.

Suggested Citation

  • Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37392-1
    DOI: 10.1038/s41467-023-37392-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37392-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37392-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federico Scala & Dmitry Kobak & Matteo Bernabucci & Yves Bernaerts & Cathryn René Cadwell & Jesus Ramon Castro & Leonard Hartmanis & Xiaolong Jiang & Sophie Laturnus & Elanine Miranda & Shalaka Mulher, 2021. "Phenotypic variation of transcriptomic cell types in mouse motor cortex," Nature, Nature, vol. 598(7879), pages 144-150, October.
    2. Trygve E. Bakken & Nikolas L. Jorstad & Qiwen Hu & Blue B. Lake & Wei Tian & Brian E. Kalmbach & Megan Crow & Rebecca D. Hodge & Fenna M. Krienen & Staci A. Sorensen & Jeroen Eggermont & Zizhen Yao & , 2021. "Comparative cellular analysis of motor cortex in human, marmoset and mouse," Nature, Nature, vol. 598(7879), pages 111-119, October.
    3. Bosiljka Tasic & Zizhen Yao & Lucas T. Graybuck & Kimberly A. Smith & Thuc Nghi Nguyen & Darren Bertagnolli & Jeff Goldy & Emma Garren & Michael N. Economo & Sarada Viswanathan & Osnat Penn & Trygve B, 2018. "Shared and distinct transcriptomic cell types across neocortical areas," Nature, Nature, vol. 563(7729), pages 72-78, November.
    4. Peng Qiu, 2020. "Embracing the dropouts in single-cell RNA-seq analysis," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Kenneth D Harris & Hannah Hochgerner & Nathan G Skene & Lorenza Magno & Linda Katona & Carolina Bengtsson Gonzales & Peter Somogyi & Nicoletta Kessaris & Sten Linnarsson & Jens Hjerling-Leffler, 2018. "Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics," PLOS Biology, Public Library of Science, vol. 16(6), pages 1-37, June.
    6. Hanqing Liu & Jingtian Zhou & Wei Tian & Chongyuan Luo & Anna Bartlett & Andrew Aldridge & Jacinta Lucero & Julia K. Osteen & Joseph R. Nery & Huaming Chen & Angeline Rivkin & Rosa G. Castanon & Ben C, 2021. "DNA methylation atlas of the mouse brain at single-cell resolution," Nature, Nature, vol. 598(7879), pages 120-128, October.
    7. Meng Zhang & Stephen W. Eichhorn & Brian Zingg & Zizhen Yao & Kaelan Cotter & Hongkui Zeng & Hongwei Dong & Xiaowei Zhuang, 2021. "Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH," Nature, Nature, vol. 598(7879), pages 137-143, October.
    8. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    9. Bianca Dumitrascu & Soledad Villar & Dustin G. Mixon & Barbara E. Engelhardt, 2021. "Optimal marker gene selection for cell type discrimination in single cell analyses," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Zizhen Yao & Hanqing Liu & Fangming Xie & Stephan Fischer & Ricky S. Adkins & Andrew I. Aldridge & Seth A. Ament & Anna Bartlett & M. Margarita Behrens & Koen Berge & Darren Bertagnolli & Hector Roux , 2021. "A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex," Nature, Nature, vol. 598(7879), pages 103-110, October.
    11. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wendy Xueyi Wang & Julie L. Lefebvre, 2022. "Morphological pseudotime ordering and fate mapping reveal diversification of cerebellar inhibitory interneurons," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Kian Kalhor & Chien-Ju Chen & Ho Suk Lee & Matthew Cai & Mahsa Nafisi & Richard Que & Carter R. Palmer & Yixu Yuan & Yida Zhang & Xuwen Li & Jinghui Song & Amanda Knoten & Blue B. Lake & Joseph P. Gau, 2024. "Mapping human tissues with highly multiplexed RNA in situ hybridization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Ziqi Zhang & Haoran Sun & Ragunathan Mariappan & Xi Chen & Xinyu Chen & Mika S. Jain & Mirjana Efremova & Sarah A. Teichmann & Vaibhav Rajan & Xiuwei Zhang, 2023. "scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Olga Gliko & Matt Mallory & Rachel Dalley & Rohan Gala & James Gornet & Hongkui Zeng & Staci A. Sorensen & Uygar Sümbül, 2024. "High-throughput analysis of dendrite and axonal arbors reveals transcriptomic correlates of neuroanatomy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Wei Zhao & Kevin G. Johnston & Honglei Ren & Xiangmin Xu & Qing Nie, 2023. "Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Ying Lei & Mengnan Cheng & Zihao Li & Zhenkun Zhuang & Liang Wu & Yunong sun & Lei Han & Zhihao Huang & Yuzhou Wang & Zifei Wang & Liqin Xu & Yue Yuan & Shang Liu & Taotao Pan & Jiarui Xie & Chuanyu L, 2022. "Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    12. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    17. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Kiya W. Govek & Patrick Nicodemus & Yuxuan Lin & Jake Crawford & Artur B. Saturnino & Hannah Cui & Kristi Zoga & Michael P. Hart & Pablo G. Camara, 2023. "CAJAL enables analysis and integration of single-cell morphological data using metric geometry," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Zhiyuan Liu & Dafei Wu & Weiwei Zhai & Liang Ma, 2023. "SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37392-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.