IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50567-8.html
   My bibliography  Save this article

Designed 2D protein crystals as dynamic molecular gatekeepers for a solid-state device

Author

Listed:
  • Sanahan Vijayakumar

    (University of California, San Diego)

  • Robert G. Alberstein

    (University of California, San Diego)

  • Zhiyin Zhang

    (University of California, San Diego)

  • Yi-Sheng Lu

    (University of California, San Diego)

  • Adriano Chan

    (University of California, San Diego)

  • Charlotte E. Wahl

    (4161 Campus Point Ct)

  • James S. Ha

    (4161 Campus Point Ct
    505 King Ave Columbus)

  • Deborah E. Hunka

    (4161 Campus Point Ct)

  • Gerry R. Boss

    (University of California, San Diego)

  • Michael J. Sailor

    (University of California, San Diego
    University of California, San Diego
    University of California, San Diego)

  • F. Akif Tezcan

    (University of California, San Diego
    University of California, San Diego)

Abstract

The sensitivity and responsiveness of living cells to environmental changes are enabled by dynamic protein structures, inspiring efforts to construct artificial supramolecular protein assemblies. However, despite their sophisticated structures, designed protein assemblies have yet to be incorporated into macroscale devices for real-life applications. We report a 2D crystalline protein assembly of C98/E57/E66L-rhamnulose-1-phosphate aldolase (CEERhuA) that selectively blocks or passes molecular species when exposed to a chemical trigger. CEERhuA crystals are engineered via cobalt(II) coordination bonds to undergo a coherent conformational change from a closed state (pore dimensions

Suggested Citation

  • Sanahan Vijayakumar & Robert G. Alberstein & Zhiyin Zhang & Yi-Sheng Lu & Adriano Chan & Charlotte E. Wahl & James S. Ha & Deborah E. Hunka & Gerry R. Boss & Michael J. Sailor & F. Akif Tezcan, 2024. "Designed 2D protein crystals as dynamic molecular gatekeepers for a solid-state device," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50567-8
    DOI: 10.1038/s41467-024-50567-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50567-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50567-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eyal Golub & Rohit H. Subramanian & Julian Esselborn & Robert G. Alberstein & Jake B. Bailey & Jerika A. Chiong & Xiaodong Yan & Timothy Booth & Timothy S. Baker & F. Akif Tezcan, 2020. "Constructing protein polyhedra via orthogonal chemical interactions," Nature, Nature, vol. 578(7793), pages 172-176, February.
    2. Ariel J. Ben-Sasson & Joseph L. Watson & William Sheffler & Matthew Camp Johnson & Alice Bittleston & Logeshwaran Somasundaram & Justin Decarreau & Fang Jiao & Jiajun Chen & Ioanna Mela & Andrew A. Dr, 2021. "Author Correction: Design of biologically active binary protein 2D materials," Nature, Nature, vol. 591(7850), pages 16-16, March.
    3. Shuai Zhang & Robert G. Alberstein & James J. Yoreo & F. Akif Tezcan, 2020. "Assembly of a patchy protein into variable 2D lattices via tunable multiscale interactions," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. J. M. Kefauver & A. B. Ward & A. Patapoutian, 2020. "Discoveries in structure and physiology of mechanically activated ion channels," Nature, Nature, vol. 587(7835), pages 567-576, November.
    5. Yuta Suzuki & Giovanni Cardone & David Restrepo & Pablo D. Zavattieri & Timothy S. Baker & F. Akif Tezcan, 2016. "Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals," Nature, Nature, vol. 533(7603), pages 369-373, May.
    6. Ariel J. Ben-Sasson & Joseph L. Watson & William Sheffler & Matthew Camp Johnson & Alice Bittleston & Logeshwaran Somasundaram & Justin Decarreau & Fang Jiao & Jiajun Chen & Ioanna Mela & Andrew A. Dr, 2021. "Design of biologically active binary protein 2D materials," Nature, Nature, vol. 589(7842), pages 468-473, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Herdman & Buse Isbilir & Andriko Kügelgen & Ulrike Schulze & Alan Wainman & Tanmay A. M. Bharat, 2024. "Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yihong Zhong & Lijia Xu & Chen Yang & Le Xu & Guyu Wang & Yuna Guo & Songtao Cheng & Xiao Tian & Changjiang Wang & Ran Xie & Xiaojian Wang & Lin Ding & Huangxian Ju, 2023. "Site-selected in situ polymerization for living cell surface engineering," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Yung Lee & Bongkyun Jang & Hyunggwi Song & Sumin Kim & Yong Won Kwon & Hyun Seok Kang & Min Seong Kim & Inkyu Park & Taek-Soo Kim & Junho Jang & Jae-Hyun Kim & Jang-Ung Park & Byeong-Soo Bae, 2024. "A seamless auxetic substrate with a negative Poisson’s ratio of −1," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Noriyuki Uchida & Ai Kohata & Kou Okuro & Annalisa Cardellini & Chiara Lionello & Eric A. Zizzi & Marco A. Deriu & Giovanni M. Pavan & Michio Tomishige & Takaaki Hikima & Takuzo Aida, 2022. "Reconstitution of microtubule into GTP-responsive nanocapsules," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yufei Wang & Yilong Zhou & Quanpeng Yang & Rourav Basak & Yu Xie & Dong Le & Alexander D. Fuqua & Wade Shipley & Zachary Yam & Alex Frano & Gaurav Arya & Andrea R. Tao, 2024. "Self-assembly of nanocrystal checkerboard patterns via non-specific interactions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Mao Hori & Angela Steinauer & Stephan Tetter & Jamiro Hälg & Eva-Maria Manz & Donald Hilvert, 2024. "Stimulus-responsive assembly of nonviral nucleocapsids," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Clement Verkest & Irina Schaefer & Timo A. Nees & Na Wang & Juri M. Jegelka & Francisco J. Taberner & Stefan G. Lechner, 2022. "Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Yuanyuan Zhao & Ju Liu & Gang Lu & Jinliang Zhang & Liyang Wan & Shan Peng & Chao Li & Yanlei Wang & Mingzhan Wang & Hongyan He & John H. Xin & Yulong Ding & Shuang Zheng, 2024. "Diurnal humidity cycle driven selective ion transport across clustered polycation membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Jonathan Mount & Grigory Maksaev & Brock T. Summers & James A. J. Fitzpatrick & Peng Yuan, 2022. "Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Minghui Tan & Pan Tian & Qian Zhang & Guiqiang Zhu & Yuchen Liu & Mengjiao Cheng & Feng Shi, 2022. "Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Kirill D. Nadezhdin & Irina A. Talyzina & Aravind Parthasarathy & Arthur Neuberger & David X. Zhang & Alexander I. Sobolevsky, 2023. "Structure of human TRPV4 in complex with GTPase RhoA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Bharat Poudel & Rajitha Rajeshwar T & Juan M. Vanegas, 2023. "Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Yuanyue Shan & Mengmeng Zhang & Meiyu Chen & Xinyi Guo & Ying Li & Mingfeng Zhang & Duanqing Pei, 2024. "Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50567-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.