IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40433-4.html
   My bibliography  Save this article

Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor

Author

Listed:
  • Bharat Poudel

    (The University of Vermont)

  • Rajitha Rajeshwar T

    (The University of Vermont)

  • Juan M. Vanegas

    (The University of Vermont
    The University of Vermont
    Oregon State University)

Abstract

The Angiotensin II Type 1 (AT1) receptor is one of the most widely studied GPCRs within the context of biased signaling. While the AT1 receptor is activated by agonists such as the peptide AngII, it can also be activated by mechanical stimuli such as membrane stretch or shear in the absence of a ligand. Despite the importance of mechanical activation of the AT1 receptor in biological processes such as vasoconstriction, little is known about the structural changes induced by external physical stimuli mediated by the surrounding lipid membrane. Here, we present a systematic simulation study that characterizes the activation of the AT1 receptor under various membrane environments and mechanical stimuli. We show that stability of the active state is highly sensitive to membrane thickness and tension. Structural comparison of membrane-mediated vs. agonist-induced activation shows that the AT1 receptor has distinct active conformations. This is supported by multi-microsecond free energy calculations that show unique landscapes for the inactive and various active states. Our modeling results provide structural insights into the mechanical activation of the AT1 receptor and how it may produce different functional outcomes within the framework of biased agonism.

Suggested Citation

  • Bharat Poudel & Rajitha Rajeshwar T & Juan M. Vanegas, 2023. "Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40433-4
    DOI: 10.1038/s41467-023-40433-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40433-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40433-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathan H. Kipniss & P. C. Dave P. Dingal & Timothy R. Abbott & Yuchen Gao & Haifeng Wang & Antonia A. Dominguez & Louai Labanieh & Lei S. Qi, 2017. "Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. J. M. Kefauver & A. B. Ward & A. Patapoutian, 2020. "Discoveries in structure and physiology of mechanically activated ion channels," Nature, Nature, vol. 587(7835), pages 567-576, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du Wenqiang & Ashkan Novin & Yamin Liu & Junaid Afzal & Yasir Suhail & Shaofei Liu & Nicole R. Gavin & Jennifer R. Jorgensen & Christopher M. Morosky & Reinaldo Figueroa & Tannin A. Schmidt & Melinda , 2024. "Scar matrix drives Piezo1 mediated stromal inflammation leading to placenta accreta spectrum," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Jonathan Mount & Grigory Maksaev & Brock T. Summers & James A. J. Fitzpatrick & Peng Yuan, 2022. "Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Anna-Maria Makri Pistikou & Glenn A. O. Cremers & Bryan L. Nathalia & Theodorus J. Meuleman & Bas W. A. Bögels & Bruno V. Eijkens & Anne Dreu & Maarten T. H. Bezembinder & Oscar M. J. A. Stassen & Car, 2023. "Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Sanahan Vijayakumar & Robert G. Alberstein & Zhiyin Zhang & Yi-Sheng Lu & Adriano Chan & Charlotte E. Wahl & James S. Ha & Deborah E. Hunka & Gerry R. Boss & Michael J. Sailor & F. Akif Tezcan, 2024. "Designed 2D protein crystals as dynamic molecular gatekeepers for a solid-state device," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Kirill D. Nadezhdin & Irina A. Talyzina & Aravind Parthasarathy & Arthur Neuberger & David X. Zhang & Alexander I. Sobolevsky, 2023. "Structure of human TRPV4 in complex with GTPase RhoA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Yuanyue Shan & Mengmeng Zhang & Meiyu Chen & Xinyi Guo & Ying Li & Mingfeng Zhang & Duanqing Pei, 2024. "Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Clement Verkest & Irina Schaefer & Timo A. Nees & Na Wang & Juri M. Jegelka & Francisco J. Taberner & Stefan G. Lechner, 2022. "Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Yuanyuan Zhao & Ju Liu & Gang Lu & Jinliang Zhang & Liyang Wan & Shan Peng & Chao Li & Yanlei Wang & Mingzhan Wang & Hongyan He & John H. Xin & Yulong Ding & Shuang Zheng, 2024. "Diurnal humidity cycle driven selective ion transport across clustered polycation membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40433-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.