IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50520-9.html
   My bibliography  Save this article

A droplet robotic system enabled by electret-induced polarization on droplet

Author

Listed:
  • Ruotong Zhang

    (The University of Hong Kong)

  • Chengzhi Zhang

    (The University of Hong Kong
    Southern University of Science and Technology)

  • Xiaoxue Fan

    (The University of Hong Kong)

  • Christina C. K. Au Yeung

    (The University of Hong Kong
    Hong Kong Science Park)

  • Huiyanchen Li

    (Hong Kong Science Park)

  • Haisong Lin

    (The University of Hong Kong
    Hong Kong Science Park)

  • Ho Cheung Shum

    (The University of Hong Kong
    Hong Kong Science Park)

Abstract

Robotics for scientific research are evolving from grasping macro-scale solid materials to directly actuating micro-scale liquid samples. However, current liquid actuation mechanisms often restrict operable liquid types or compromise the activity of biochemical samples by introducing interfering mediums. Here, we propose a robotic liquid handling system enabled by a novel droplet actuation mechanism, termed electret-induced polarization on droplet (EPD). EPD enables all-liquid actuation in principle and experimentally exhibits generality for actuating various inorganic/organic liquids with relative permittivity ranging from 2.25 to 84.2 and volume from 500 nL to 1 mL. Moreover, EPD is capable of actuating various biochemical samples without compromising their activities, including various body fluids, living cells, and proteins. A robotic system is also coupled with the EPD mechanism to enable full automation. EPD’s high adaptability with liquid types and biochemical samples thus promotes the automation of liquid-based scientific experiments across multiple disciplines.

Suggested Citation

  • Ruotong Zhang & Chengzhi Zhang & Xiaoxue Fan & Christina C. K. Au Yeung & Huiyanchen Li & Haisong Lin & Ho Cheung Shum, 2024. "A droplet robotic system enabled by electret-induced polarization on droplet," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50520-9
    DOI: 10.1038/s41467-024-50520-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50520-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50520-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tim Chapman, 2003. "Lab automation and robotics: Automation on the move," Nature, Nature, vol. 421(6923), pages 661-663, February.
    2. Orlin D. Velev & Brian G. Prevo & Ketan H. Bhatt, 2003. "On-chip manipulation of free droplets," Nature, Nature, vol. 426(6966), pages 515-516, December.
    3. Shiquan Lin & Liang Xu & Aurelia Chi Wang & Zhong Lin Wang, 2020. "Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Haisong Lin & Wenzhuo Yu & Kiarash A. Sabet & Michael Bogumil & Yichao Zhao & Jacob Hambalek & Shuyu Lin & Sukantha Chandrasekaran & Omai Garner & Dino Di Carlo & Sam Emaminejad, 2022. "Ferrobotic swarms enable accessible and adaptable automated viral testing," Nature, Nature, vol. 611(7936), pages 570-577, November.
    5. Johannes Hartmann & Maximilian T. Schür & Steffen Hardt, 2022. "Manipulation and control of droplets on surfaces in a homogeneous electric field," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Benjamin Burger & Phillip M. Maffettone & Vladimir V. Gusev & Catherine M. Aitchison & Yang Bai & Xiaoyan Wang & Xiaobo Li & Ben M. Alston & Buyi Li & Rob Clowes & Nicola Rankin & Brandon Harris & Rei, 2020. "A mobile robotic chemist," Nature, Nature, vol. 583(7815), pages 237-241, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiquan Lin & Laipan Zhu & Zhen Tang & Zhong Lin Wang, 2022. "Spin-selected electron transfer in liquid–solid contact electrification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yi Li & Yi Luo & Song Xiao & Cheng Zhang & Cheng Pan & Fuping Zeng & Zhaolun Cui & Bangdou Huang & Ju Tang & Tao Shao & Xiaoxing Zhang & Jiaqing Xiong & Zhong Lin Wang, 2024. "Visualization and standardized quantification of surface charge density for triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yuankai Jin & Siyan Yang & Mingzi Sun & Shouwei Gao & Yaqi Cheng & Chenyang Wu & Zhenyu Xu & Yunting Guo & Wanghuai Xu & Xuefeng Gao & Steven Wang & Bolong Huang & Zuankai Wang, 2024. "How liquids charge the superhydrophobic surfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Benjamin P. MacLeod & Fraser G. L. Parlane & Connor C. Rupnow & Kevan E. Dettelbach & Michael S. Elliott & Thomas D. Morrissey & Ted H. Haley & Oleksii Proskurin & Michael B. Rooney & Nina Taherimakhs, 2022. "A self-driving laboratory advances the Pareto front for material properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Zhipeng Zhao & Huizeng Li & An Li & Wei Fang & Zheren Cai & Mingzhu Li & Xiqiao Feng & Yanlin Song, 2021. "Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Chen, Rui & Qiu, Qinpan & Peng, Xiao & Tang, Chao, 2023. "Surface modified h-BN towards enhanced electrical properties and thermal conductivity of natural ester insulating oil," Renewable Energy, Elsevier, vol. 204(C), pages 185-196.
    15. Philip Dettinger & Tobias Kull & Geethika Arekatla & Nouraiz Ahmed & Yang Zhang & Florin Schneiter & Arne Wehling & Daniel Schirmacher & Shunsuke Kawamura & Dirk Loeffler & Timm Schroeder, 2022. "Open-source personal pipetting robots with live-cell incubation and microscopy compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Susan Erikson, 2021. "COVID‐Apps: Misdirecting Public Health Attention in a Pandemic," Global Policy, London School of Economics and Political Science, vol. 12(S6), pages 97-100, July.
    17. Amanda A. Volk & Robert W. Epps & Daniel T. Yonemoto & Benjamin S. Masters & Felix N. Castellano & Kristofer G. Reyes & Milad Abolhasani, 2023. "AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Jiyu Cui & Fang Wu & Wen Zhang & Lifeng Yang & Jianbo Hu & Yin Fang & Peng Ye & Qiang Zhang & Xian Suo & Yiming Mo & Xili Cui & Huajun Chen & Huabin Xing, 2023. "Direct prediction of gas adsorption via spatial atom interaction learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    20. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50520-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.