IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54238-6.html
   My bibliography  Save this article

Reaction blueprints and logical control flow for parallelized chiral synthesis in the Chemputer

Author

Listed:
  • Mindaugas Šiaučiulis

    (11 Chapel Lane)

  • Christian Knittl-Frank

    (11 Chapel Lane)

  • S. Hessam M. Mehr

    (11 Chapel Lane)

  • Emma Clarke

    (11 Chapel Lane)

  • Leroy Cronin

    (11 Chapel Lane)

Abstract

Despite recent proliferation of programmable robotic chemistry hardware, current chemical programming ontologies lack essential structured programming constructs like variables, functions, and loops. Herein we present an integration of these concepts into χDL, a universal high-level chemical programming language executable in the Chemputer. To achieve this, we introduce reaction blueprints as a chemical analog to functions in computer science, allowing to apply sets of synthesis operations to different reagents and conditions. We further expand χDL with logical operation queues and iteration via pattern matching. The combination of these new features allows encoding of chemical syntheses in generalized, reproducible, and parallelized digital workflows rather than opaque and entangled single-step operations. This is showcased by synthesizing chiral diarylprolinol catalysts and subsequently utilizing them in various synthetic transformations (13 separate automated runs affording 3 organocatalysts and 12 distinct enantioenriched products in 42–97% yield, up to > 99:1 er), including automated catalyst recycling and reuse.

Suggested Citation

  • Mindaugas Šiaučiulis & Christian Knittl-Frank & S. Hessam M. Mehr & Emma Clarke & Leroy Cronin, 2024. "Reaction blueprints and logical control flow for parallelized chiral synthesis in the Chemputer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54238-6
    DOI: 10.1038/s41467-024-54238-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54238-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54238-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian W. Davies, 2019. "The digitization of organic synthesis," Nature, Nature, vol. 570(7760), pages 175-181, June.
    2. Jiaru Bai & Sebastian Mosbach & Connor J. Taylor & Dogancan Karan & Kok Foong Lee & Simon D. Rihm & Jethro Akroyd & Alexei A. Lapkin & Markus Kraft, 2024. "A dynamic knowledge graph approach to distributed self-driving laboratories," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Sourav Chatterjee & Mara Guidi & Peter H. Seeberger & Kerry Gilmore, 2020. "Automated radial synthesis of organic molecules," Nature, Nature, vol. 579(7799), pages 379-384, March.
    4. Benjamin Burger & Phillip M. Maffettone & Vladimir V. Gusev & Catherine M. Aitchison & Yang Bai & Xiaoyan Wang & Xiaobo Li & Ben M. Alston & Buyi Li & Rob Clowes & Nicola Rankin & Brandon Harris & Rei, 2020. "A mobile robotic chemist," Nature, Nature, vol. 583(7815), pages 237-241, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Artem I. Leonov & Alexander J. S. Hammer & Slawomir Lach & S. Hessam M. Mehr & Dario Caramelli & Davide Angelone & Aamir Khan & Steven O’Sullivan & Matthew Craven & Liam Wilbraham & Leroy Cronin, 2024. "An integrated self-optimizing programmable chemical synthesis and reaction engine," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jia-Min Lu & Hui-Feng Wang & Qi-Hang Guo & Jian-Wei Wang & Tong-Tong Li & Ke-Xin Chen & Meng-Ting Zhang & Jian-Bo Chen & Qian-Nuan Shi & Yi Huang & Shao-Wen Shi & Guang-Yong Chen & Jian-Zhang Pan & Zh, 2024. "Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Susan Erikson, 2021. "COVID‐Apps: Misdirecting Public Health Attention in a Pandemic," Global Policy, London School of Economics and Political Science, vol. 12(S6), pages 97-100, July.
    5. Amanda A. Volk & Robert W. Epps & Daniel T. Yonemoto & Benjamin S. Masters & Felix N. Castellano & Kristofer G. Reyes & Milad Abolhasani, 2023. "AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Hyuk Jun Yoo & Kwan-Young Lee & Donghun Kim & Sang Soo Han, 2024. "OCTOPUS: operation control system for task optimization and job parallelization via a user-optimal scheduler," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jiyu Cui & Fang Wu & Wen Zhang & Lifeng Yang & Jianbo Hu & Yin Fang & Peng Ye & Qiang Zhang & Xian Suo & Yiming Mo & Xili Cui & Huajun Chen & Huabin Xing, 2023. "Direct prediction of gas adsorption via spatial atom interaction learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    10. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    11. Hao Xu & Jinglong Lin & Dongxiao Zhang & Fanyang Mo, 2023. "Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Benjamin P. MacLeod & Fraser G. L. Parlane & Connor C. Rupnow & Kevan E. Dettelbach & Michael S. Elliott & Thomas D. Morrissey & Ted H. Haley & Oleksii Proskurin & Michael B. Rooney & Nina Taherimakhs, 2022. "A self-driving laboratory advances the Pareto front for material properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Xi Zhang & Te Zhang & Xin Wei & Zhanpeng Xiao & Weiwen Zhang, 2024. "Reducing potential dual-use risks in synthetic biology laboratory research: a dynamic model of analysis," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    14. Yingxue Sun & Yuanyi Zhao & Xinjian Xie & Hongjiao Li & Wenqian Feng, 2024. "Printed polymer platform empowering machine-assisted chemical synthesis in stacked droplets," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Jan Durrer & Prajwal Agrawal & Ali Ozgul & Stephan C. F. Neuhauss & Nitesh Nama & Daniel Ahmed, 2022. "A robot-assisted acoustofluidic end effector," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Saugat Kandel & Tao Zhou & Anakha V. Babu & Zichao Di & Xinxin Li & Xuedan Ma & Martin Holt & Antonino Miceli & Charudatta Phatak & Mathew J. Cherukara, 2023. "Demonstration of an AI-driven workflow for autonomous high-resolution scanning microscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Ruotong Zhang & Chengzhi Zhang & Xiaoxue Fan & Christina C. K. Au Yeung & Huiyanchen Li & Haisong Lin & Ho Cheung Shum, 2024. "A droplet robotic system enabled by electret-induced polarization on droplet," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Mojan Omidvar & Hangfeng Zhang & Achintha Avin Ihalage & Theo Graves Saunders & Henry Giddens & Michael Forrester & Sajad Haq & Yang Hao, 2024. "Accelerated discovery of perovskite solid solutions through automated materials synthesis and characterization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54238-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.