IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v204y2023icp185-196.html
   My bibliography  Save this article

Surface modified h-BN towards enhanced electrical properties and thermal conductivity of natural ester insulating oil

Author

Listed:
  • Chen, Rui
  • Qiu, Qinpan
  • Peng, Xiao
  • Tang, Chao

Abstract

Natural ester is regarded as a potential alternative to mineral insulating oil and has a wide range of applications in power system, but its electrical properties and thermal conductivity still need to be improved. Nano modification technology can improve the performance of natural ester to ensure the stability and reliability of natural ester in power equipment. In this study, nano modified natural ester is prepared with APTES surface modified h-BN, and the mechanism of enhancing the properties of natural ester is explored from the microscopic perspective by molecular simulation. The experimental results showed that nano h-BN had good dispersion stability in natural ester after surface modification with APTES. The electrical properties and thermal conductivity of the nano modified natural ester have been greatly improved, and the relative optimal doping concentration of nanoparticles is 0.03 g/L. The simulation results show that the interfacial thickness between nanoparticles and natural ester is larger and more tightly bound after surface modification, which is beneficial to reduce thermal resistance and improve thermal conductivity of natural ester insulating oil. The traps at the interface between nanoparticles and natural ester can capture free electrons in the oil, thus improving the breakdown voltage of natural ester insulating oil.

Suggested Citation

  • Chen, Rui & Qiu, Qinpan & Peng, Xiao & Tang, Chao, 2023. "Surface modified h-BN towards enhanced electrical properties and thermal conductivity of natural ester insulating oil," Renewable Energy, Elsevier, vol. 204(C), pages 185-196.
  • Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:185-196
    DOI: 10.1016/j.renene.2022.12.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122019024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Amin, H. & O’Brien, J. & Lashbrook, M., 2013. "Synthetic ester transformer fluid: A total solution to windpark transformer technology," Renewable Energy, Elsevier, vol. 49(C), pages 33-38.
    2. Li, Jiayin & Hu, Xiaowu & Zhang, Chuge & Luo, Wenxing & Jiang, Xiongxin, 2021. "Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage," Renewable Energy, Elsevier, vol. 178(C), pages 118-127.
    3. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Shiquan Lin & Liang Xu & Aurelia Chi Wang & Zhong Lin Wang, 2020. "Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Rafiq, M. & Lv, Y.Z. & Zhou, Y. & Ma, K.B. & Wang, W. & Li, C.R. & Wang, Q., 2015. "Use of vegetable oils as transformer oils – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 308-324.
    6. Qiu, Qinpan & Zhang, Jingwen & Yang, Lu & Zhang, Jinzhu & Chen, Binghao & Tang, Chao, 2021. "Simulation of the diffusion behavior of water molecules in palm oil and mineral oil at different temperatures," Renewable Energy, Elsevier, vol. 174(C), pages 909-917.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chu & Zhu, Haixi & Ma, Yinjie & E, Jiaqiang, 2023. "Evaluation of lithium battery immersion thermal management using a novel pentaerythritol ester coolant," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Wenyu & Hao, Jian & Zhang, Junyi & Zhang, Jingwen & Gao, Chenyu & Liao, Ruijin, 2023. "Atomic scale microparameter analysis of modified natural ester molecules related to impulse discharge characteristics under electric field," Renewable Energy, Elsevier, vol. 219(P1).
    2. Shiquan Lin & Laipan Zhu & Zhen Tang & Zhong Lin Wang, 2022. "Spin-selected electron transfer in liquid–solid contact electrification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    4. Yi Li & Yi Luo & Song Xiao & Cheng Zhang & Cheng Pan & Fuping Zeng & Zhaolun Cui & Bangdou Huang & Ju Tang & Tao Shao & Xiaoxing Zhang & Jiaqing Xiong & Zhong Lin Wang, 2024. "Visualization and standardized quantification of surface charge density for triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Qiu, Qinpan & Zhang, Jingwen & Yang, Lu & Zhang, Jinzhu & Chen, Binghao & Tang, Chao, 2021. "Simulation of the diffusion behavior of water molecules in palm oil and mineral oil at different temperatures," Renewable Energy, Elsevier, vol. 174(C), pages 909-917.
    6. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    7. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    8. Luc Loiselle & U. Mohan Rao & Issouf Fofana, 2020. "Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions," Energies, MDPI, vol. 13(13), pages 1-15, July.
    9. Adam J. Collin & Anup J. Nambiar & David Bould & Ben Whitby & M. A. Moonem & Benjamin Schenkman & Stanley Atcitty & Paulo Chainho & Aristides E. Kiprakis, 2017. "Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review," Energies, MDPI, vol. 10(12), pages 1-31, November.
    10. Cristina Méndez & Cristian Olmo & Ismael Antolín & Alfredo Ortiz & Carlos J. Renedo, 2024. "Analysing the Suitability of Using Different Biodegradable Fluids for Power Transformers with Thermally Upgraded Paper," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    11. Bartlomiej Pasternak & Pawel Rozga, 2023. "Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress," Energies, MDPI, vol. 16(2), pages 1-11, January.
    12. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Grzegorz Dombek & Jarosław Gielniak, 2023. "Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations," Energies, MDPI, vol. 16(10), pages 1-14, May.
    14. Yang, Ping & Wu, Bo & Tong, Xuan & Zeng, Min & Wang, Qiuwang & Cheng, Zhilong, 2023. "Insight into heat transfer process of graphene aerogel composite phase change material," Energy, Elsevier, vol. 279(C).
    15. Yuankai Jin & Siyan Yang & Mingzi Sun & Shouwei Gao & Yaqi Cheng & Chenyang Wu & Zhenyu Xu & Yunting Guo & Wanghuai Xu & Xuefeng Gao & Steven Wang & Bolong Huang & Zuankai Wang, 2024. "How liquids charge the superhydrophobic surfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Yuzhen Lv & Muhammad Rafiq & Chengrong Li & Bingliang Shan, 2017. "Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids," Energies, MDPI, vol. 10(7), pages 1-21, July.
    17. Samson Okikiola Oparanti & Ungarala Mohan Rao & Issouf Fofana, 2022. "Natural Esters for Green Transformers: Challenges and Keys for Improved Serviceability," Energies, MDPI, vol. 16(1), pages 1-23, December.
    18. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Zhou, Yunhong & Zeng, Jiwei & Guo, Yiyou & Chen, Haobin & Bi, Tiantian & Lin, Qilang, 2023. "Three-dimensional hierarchical porous carbon surface-decorated graphitic carbon foam/stearic acid composite as high-performance shape-stabilized phase change material with desirable photothermal conve," Applied Energy, Elsevier, vol. 352(C).
    20. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:204:y:2023:i:c:p:185-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.