IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45041-4.html
   My bibliography  Save this article

A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials

Author

Listed:
  • Ziming Wang

    (CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xuanli Dong

    (CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiao-Fen Li

    (Tsinghua University)

  • Yawei Feng

    (CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
    City University of Hong Kong)

  • Shunning Li

    (Peking University)

  • Wei Tang

    (CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhong Lin Wang

    (CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    School of Materials Science and Engineering, Georgia Institute of Technology)

Abstract

Ball milling is a representative mechanochemical strategy that uses the mechanical agitation-induced effects, defects, or extreme conditions to activate substrates. Here, we demonstrate that ball grinding could bring about contact-electro-catalysis (CEC) by using inert and conventional triboelectric materials. Exemplified by a liquid-assisted-grinding setup involving polytetrafluoroethylene (PTFE), reactive oxygen species (ROS) are produced, despite PTFE being generally considered as catalytically inert. The formation of ROS occurs with various polymers, such as polydimethylsiloxane (PDMS) and polypropylene (PP), and the amount of generated ROS aligns well with the polymers’ contact-electrification abilities. It is suggested that mechanical collision not only maximizes the overlap in electron wave functions across the interface, but also excites phonons that provide the energy for electron transition. We expect the utilization of triboelectric materials and their derived CEC could lead to a field of ball milling-assisted mechanochemistry using any universal triboelectric materials under mild conditions.

Suggested Citation

  • Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45041-4
    DOI: 10.1038/s41467-024-45041-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45041-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45041-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyeong-Yoon Baek & Woocheol Lee & Jonghoon Lee & Jaeyoung Kim & Heebeom Ahn & Jae Il Kim & Junwoo Kim & Hyungbin Lim & Jiwon Shin & Yoon-Joo Ko & Hyeon-Dong Lee & Richard H. Friend & Tae-Woo Lee & Jeo, 2022. "Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs–Pb–Br perovskites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Lei Chen & Jialin Wen & Peng Zhang & Bingjun Yu & Cheng Chen & Tianbao Ma & Xinchun Lu & Seong H. Kim & Linmao Qian, 2018. "Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Shiquan Lin & Liang Xu & Aurelia Chi Wang & Zhong Lin Wang, 2020. "Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Ziming Wang & Andy Berbille & Yawei Feng & Site Li & Laipan Zhu & Wei Tang & Zhong Lin Wang, 2022. "Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Zhao Li & Chengliang Mao & Qijun Pei & Paul N. Duchesne & Teng He & Meikun Xia & Jintao Wang & Lu Wang & Rui Song & Feysal M. Ali & Débora Motta Meira & Qingjie Ge & Kulbir Kaur Ghuman & Le He & Xiaoh, 2022. "Engineered disorder in CO2 photocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Jong-Hoon Kim & Tian-Yi Dai & Mihyun Yang & Jeong-Min Seo & Jae Seong Lee & Do Hyung Kweon & Xing-You Lang & Kyuwook Ihm & Tae Joo Shin & Gao-Feng Han & Qing Jiang & Jong-Beom Baek, 2023. "Achieving volatile potassium promoted ammonia synthesis via mechanochemistry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Huifan Li & Andy Berbille & Xin Zhao & Ziming Wang & Wei Tang & Zhong Lin Wang, 2023. "A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries," Nature Energy, Nature, vol. 8(10), pages 1137-1144, October.
    9. Moonsu Yoon & Yanhao Dong & Yimeng Huang & Baoming Wang & Junghwa Kim & Jin-Sung Park & Jaeseong Hwang & Jaehyun Park & Seok Ju Kang & Jaephil Cho & Ju Li, 2023. "Eutectic salt-assisted planetary centrifugal deagglomeration for single-crystalline cathode synthesis," Nature Energy, Nature, vol. 8(5), pages 482-491, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Li & Yi Luo & Song Xiao & Cheng Zhang & Cheng Pan & Fuping Zeng & Zhaolun Cui & Bangdou Huang & Ju Tang & Tao Shao & Xiaoxing Zhang & Jiaqing Xiong & Zhong Lin Wang, 2024. "Visualization and standardized quantification of surface charge density for triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yusen Su & Andy Berbille & Xiao-Fen Li & Jinyang Zhang & MohammadJavad PourhosseiniAsl & Huifan Li & Zhanqi Liu & Shunning Li & Jianbo Liu & Laipan Zhu & Zhong Lin Wang, 2024. "Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shiquan Lin & Laipan Zhu & Zhen Tang & Zhong Lin Wang, 2022. "Spin-selected electron transfer in liquid–solid contact electrification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Xin Pan & Yixi Zhuang & Wei He & Cunjian Lin & Lefu Mei & Changjian Chen & Hao Xue & Zhigang Sun & Chunfeng Wang & Dengfeng Peng & Yanqing Zheng & Caofeng Pan & Lixin Wang & Rong-Jun Xie, 2024. "Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Zehua Peng & Jihong Shi & Xiao Xiao & Ying Hong & Xuemu Li & Weiwei Zhang & Yongliang Cheng & Zuankai Wang & Wen Jung Li & Jun Chen & Michael K. H. Leung & Zhengbao Yang, 2022. "Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jikai Sun & Rui Tu & Yuchun Xu & Hongyan Yang & Tie Yu & Dong Zhai & Xiuqin Ci & Weiqiao Deng, 2024. "Machine learning aided design of single-atom alloy catalysts for methane cracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    11. Yuankai Jin & Siyan Yang & Mingzi Sun & Shouwei Gao & Yaqi Cheng & Chenyang Wu & Zhenyu Xu & Yunting Guo & Wanghuai Xu & Xuefeng Gao & Steven Wang & Bolong Huang & Zuankai Wang, 2024. "How liquids charge the superhydrophobic surfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Weiyin Chen & Yi Cheng & Jinhang Chen & Ksenia V. Bets & Rodrigo V. Salvatierra & Chang Ge & John Tianci Li & Duy Xuan Luong & Carter Kittrell & Zicheng Wang & Emily A. McHugh & Guanhui Gao & Bing Den, 2024. "Nondestructive flash cathode recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Deokjae Heo & Jihoon Chung & Gunsub Shin & Minhyeong Seok & Chanhee Lee & Sangmin Lee, 2021. "Yo-Yo Inspired Triboelectric Nanogenerator," Energies, MDPI, vol. 14(7), pages 1-9, March.
    15. Yunlong Xu & Zhongda Sun & Zhiqing Bai & Hua Shen & Run Wen & Fumei Wang & Guangbiao Xu & Chengkuo Lee, 2024. "Bionic e-skin with precise multi-directional droplet sliding sensing for enhanced robotic perception," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yawei Wang & Hengxu Du & Hengyi Yang & Ziyue Xi & Cong Zhao & Zian Qian & Xinyuan Chuai & Xuzhang Peng & Hongyong Yu & Yu Zhang & Xin Li & Guobiao Hu & Hao Wang & Minyi Xu, 2024. "A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Kyoungmun Lee & Yumi Cho & Jin Chul Kim & Chiyoung Choi & Jiwon Kim & Jae Kyoo Lee & Sheng Li & Sang Kyu Kwak & Siyoung Q. Choi, 2024. "Catalyst-free selective oxidation of C(sp3)-H bonds in toluene on water," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Zhipeng Zhao & Huizeng Li & An Li & Wei Fang & Zheren Cai & Mingzhu Li & Xiqiao Feng & Yanlin Song, 2021. "Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    20. Mengjiao Li & Hong-Wei Lu & Shu-Wei Wang & Rei-Ping Li & Jiann-Yeu Chen & Wen-Shuo Chuang & Feng-Shou Yang & Yen-Fu Lin & Chih-Yen Chen & Ying-Chih Lai, 2022. "Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45041-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.