IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47210-x.html
   My bibliography  Save this article

Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation

Author

Listed:
  • Hongyuan Sheng

    (University of California, Los Angeles)

  • Jingwen Sun

    (University of California, Los Angeles)

  • Oliver Rodríguez

    (University of Illinois Urbana–Champaign
    University of Illinois Urbana–Champaign
    Argonne National Laboratory)

  • Benjamin B. Hoar

    (University of California, Los Angeles)

  • Weitong Zhang

    (University of California, Los Angeles)

  • Danlei Xiang

    (University of California, Los Angeles)

  • Tianhua Tang

    (University of Utah)

  • Avijit Hazra

    (University of Utah)

  • Daniel S. Min

    (University of California, Los Angeles)

  • Abigail G. Doyle

    (University of California, Los Angeles)

  • Matthew S. Sigman

    (University of Utah)

  • Cyrille Costentin

    (CNRS)

  • Quanquan Gu

    (University of California, Los Angeles)

  • Joaquín Rodríguez-López

    (University of Illinois Urbana–Champaign
    University of Illinois Urbana–Champaign
    Argonne National Laboratory)

  • Chong Liu

    (University of California, Los Angeles
    University of California, Los Angeles)

Abstract

Electrochemical research often requires stringent combinations of experimental parameters that are demanding to manually locate. Recent advances in automated instrumentation and machine-learning algorithms unlock the possibility for accelerated studies of electrochemical fundamentals via high-throughput, online decision-making. Here we report an autonomous electrochemical platform that implements an adaptive, closed-loop workflow for mechanistic investigation of molecular electrochemistry. As a proof-of-concept, this platform autonomously identifies and investigates an EC mechanism, an interfacial electron transfer (E step) followed by a solution reaction (C step), for cobalt tetraphenylporphyrin exposed to a library of organohalide electrophiles. The generally applicable workflow accurately discerns the EC mechanism’s presence amid negative controls and outliers, adaptively designs desired experimental conditions, and quantitatively extracts kinetic information of the C step spanning over 7 orders of magnitude, from which mechanistic insights into oxidative addition pathways are gained. This work opens opportunities for autonomous mechanistic discoveries in self-driving electrochemistry laboratories without manual intervention.

Suggested Citation

  • Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47210-x
    DOI: 10.1038/s41467-024-47210-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47210-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47210-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jarosław M. Granda & Liva Donina & Vincenza Dragone & De-Liang Long & Leroy Cronin, 2018. "Publisher Correction: Controlling an organic synthesis robot with machine learning to search for new reactivity," Nature, Nature, vol. 562(7728), pages 26-26, October.
    2. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    3. Benjamin J. Shields & Jason Stevens & Jun Li & Marvin Parasram & Farhan Damani & Jesus I. Martinez Alvarado & Jacob M. Janey & Ryan P. Adams & Abigail G. Doyle, 2021. "Bayesian reaction optimization as a tool for chemical synthesis," Nature, Nature, vol. 590(7844), pages 89-96, February.
    4. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Jarosław M. Granda & Liva Donina & Vincenza Dragone & De-Liang Long & Leroy Cronin, 2018. "Controlling an organic synthesis robot with machine learning to search for new reactivity," Nature, Nature, vol. 559(7714), pages 377-381, July.
    6. Benjamin Burger & Phillip M. Maffettone & Vladimir V. Gusev & Catherine M. Aitchison & Yang Bai & Xiaoyan Wang & Xiaobo Li & Ben M. Alston & Buyi Li & Rob Clowes & Nicola Rankin & Brandon Harris & Rei, 2020. "A mobile robotic chemist," Nature, Nature, vol. 583(7815), pages 237-241, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Hyuk Jun Yoo & Kwan-Young Lee & Donghun Kim & Sang Soo Han, 2024. "OCTOPUS: operation control system for task optimization and job parallelization via a user-optimal scheduler," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Jia-Min Lu & Hui-Feng Wang & Qi-Hang Guo & Jian-Wei Wang & Tong-Tong Li & Ke-Xin Chen & Meng-Ting Zhang & Jian-Bo Chen & Qian-Nuan Shi & Yi Huang & Shao-Wen Shi & Guang-Yong Chen & Jian-Zhang Pan & Zh, 2024. "Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    7. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    10. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Juran Noh & Hieu A. Doan & Heather Job & Lily A. Robertson & Lu Zhang & Rajeev S. Assary & Karl Mueller & Vijayakumar Murugesan & Yangang Liang, 2024. "An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    14. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    15. Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Susan Erikson, 2021. "COVID‐Apps: Misdirecting Public Health Attention in a Pandemic," Global Policy, London School of Economics and Political Science, vol. 12(S6), pages 97-100, July.
    19. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    20. Xuekun Lu & Marco Lagnoni & Antonio Bertei & Supratim Das & Rhodri E. Owen & Qi Li & Kieran O’Regan & Aaron Wade & Donal P. Finegan & Emma Kendrick & Martin Z. Bazant & Dan J. L. Brett & Paul R. Shear, 2023. "Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47210-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.