IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49863-0.html
   My bibliography  Save this article

Achieving net zero greenhouse gas emissions critical to limit climate tipping risks

Author

Listed:
  • Tessa Möller

    (International Institute for Applied Systems Analysis (IIASA)
    Climate Analytics
    Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    University of Potsdam)

  • Annika Ernest Högner

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    University of Potsdam
    University of Potsdam)

  • Carl-Friedrich Schleussner

    (International Institute for Applied Systems Analysis (IIASA)
    Climate Analytics
    Humboldt University of Berlin)

  • Samuel Bien

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    University of Potsdam
    University of Potsdam)

  • Niklas H. Kitzmann

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    University of Potsdam)

  • Robin D. Lamboll

    (Imperial College London)

  • Joeri Rogelj

    (International Institute for Applied Systems Analysis (IIASA)
    Imperial College London
    Imperial College London)

  • Jonathan F. Donges

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Stockholm University
    Princeton University)

  • Johan Rockström

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    University of Potsdam
    Stockholm University)

  • Nico Wunderling

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Princeton University
    Goethe University Frankfurt)

Abstract

Under current emission trajectories, temporarily overshooting the Paris global warming limit of 1.5 °C is a distinct possibility. Permanently exceeding this limit would substantially increase the probability of triggering climate tipping elements. Here, we investigate the tipping risks associated with several policy-relevant future emission scenarios, using a stylised Earth system model of four interconnected climate tipping elements. We show that following current policies this century would commit to a 45% tipping risk by 2300 (median, 10–90% range: 23–71%), even if temperatures are brought back to below 1.5 °C. We find that tipping risk by 2300 increases with every additional 0.1 °C of overshoot above 1.5 °C and strongly accelerates for peak warming above 2.0 °C. Achieving and maintaining at least net zero greenhouse gas emissions by 2100 is paramount to minimise tipping risk in the long term. Our results underscore that stringent emission reductions in the current decade are critical for planetary stability.

Suggested Citation

  • Tessa Möller & Annika Ernest Högner & Carl-Friedrich Schleussner & Samuel Bien & Niklas H. Kitzmann & Robin D. Lamboll & Joeri Rogelj & Jonathan F. Donges & Johan Rockström & Nico Wunderling, 2024. "Achieving net zero greenhouse gas emissions critical to limit climate tipping risks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49863-0
    DOI: 10.1038/s41467-024-49863-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49863-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49863-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    2. Timothy M. Lenton & Johan Rockström & Owen Gaffney & Stefan Rahmstorf & Katherine Richardson & Will Steffen & Hans Joachim Schellnhuber, 2019. "Climate tipping points — too risky to bet against," Nature, Nature, vol. 575(7784), pages 592-595, November.
    3. Andrew D. King & J. M. Kale Sniderman & Andrea J. Dittus & Josephine R. Brown & Ed Hawkins & Tilo Ziehn, 2021. "Studying climate stabilization at Paris Agreement levels," Nature Climate Change, Nature, vol. 11(12), pages 1010-1013, December.
    4. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Nils Bochow & Anna Poltronieri & Alexander Robinson & Marisa Montoya & Martin Rypdal & Niklas Boers, 2023. "Overshooting the critical threshold for the Greenland ice sheet," Nature, Nature, vol. 622(7983), pages 528-536, October.
    6. Uta Kloenne & Alexander Nauels & Pam Pearson & Robert M. DeConto & Helen S. Findlay & Gustaf Hugelius & Alexander Robinson & Joeri Rogelj & Edward A. G. Schuur & Julienne Stroeve & Carl-Friedrich Schl, 2023. "Only halving emissions by 2030 can minimize risks of crossing cryosphere thresholds," Nature Climate Change, Nature, vol. 13(1), pages 9-11, January.
    7. Bernardo M. Flores & Encarni Montoya & Boris Sakschewski & Nathália Nascimento & Arie Staal & Richard A. Betts & Carolina Levis & David M. Lapola & Adriane Esquível-Muelbert & Catarina Jakovac & Carlo, 2024. "Critical transitions in the Amazon forest system," Nature, Nature, vol. 626(7999), pages 555-564, February.
    8. Julius Garbe & Torsten Albrecht & Anders Levermann & Jonathan F. Donges & Ricarda Winkelmann, 2020. "The hysteresis of the Antarctic Ice Sheet," Nature, Nature, vol. 585(7826), pages 538-544, September.
    9. Luciana V. Gatti & Luana S. Basso & John B. Miller & Manuel Gloor & Lucas Gatti Domingues & Henrique L. G. Cassol & Graciela Tejada & Luiz E. O. C. Aragão & Carlos Nobre & Wouter Peters & Luciano Mara, 2021. "Amazonia as a carbon source linked to deforestation and climate change," Nature, Nature, vol. 595(7867), pages 388-393, July.
    10. Niklas Boers, 2021. "Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 11(8), pages 680-688, August.
    11. Nico Wunderling & Matteo Willeit & Jonathan F. Donges & Ricarda Winkelmann, 2020. "Global warming due to loss of large ice masses and Arctic summer sea ice," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    12. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    13. Nico Wunderling & Ricarda Winkelmann & Johan Rockström & Sina Loriani & David I. Armstrong McKay & Paul D. L. Ritchie & Boris Sakschewski & Jonathan F. Donges, 2023. "Global warming overshoots increase risks of climate tipping cascades in a network model," Nature Climate Change, Nature, vol. 13(1), pages 75-82, January.
    14. Paul D. L. Ritchie & Joseph J. Clarke & Peter M. Cox & Chris Huntingford, 2021. "Overshooting tipping point thresholds in a changing climate," Nature, Nature, vol. 592(7855), pages 517-523, April.
    15. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    3. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    4. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    5. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    6. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    7. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    8. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    9. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    10. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    11. Kim, Hyeyoung & House, Lisa A. & KIm, Tae-Kyun, 2016. "Consumer perceptions of climate change and willingness to pay for mandatory implementation of low carbon labels: the case of South Korea," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(4), October.
    12. Guoju, Xiao & Weixiang, Liu & Qiang, Xu & Zhaojun, Sun & Jing, Wang, 2005. "Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 74(3), pages 243-255, June.
    13. Sogol Moradian & Farhad Yazdandoost, 2021. "Seasonal meteorological drought projections over Iran using the NMME data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1089-1107, August.
    14. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    15. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    16. Marc Kennedy & Clive Anderson & Anthony O'Hagan & Mark Lomas & Ian Woodward & John Paul Gosling & Andreas Heinemeyer, 2008. "Quantifying uncertainty in the biospheric carbon flux for England and Wales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 109-135, January.
    17. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    18. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    19. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    20. Naudé, Wim, 2024. "Entrepreneurship Is Dangerously Obsessed with Growth and Incompatible with Current Visions of a Post-growth Society," IZA Discussion Papers 17158, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49863-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.