IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49541-1.html
   My bibliography  Save this article

Intracranial EEG signals disentangle multi-areal neural dynamics of vicarious pain perception

Author

Listed:
  • Huixin Tan

    (State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University
    Beijing Normal University
    Beijing Normal University)

  • Xiaoyu Zeng

    (State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University
    Beijing Normal University
    Beijing Normal University)

  • Jun Ni

    (State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University
    Beijing Normal University
    Beijing Normal University)

  • Kun Liang

    (Capital Medical University)

  • Cuiping Xu

    (Capital Medical University)

  • Yanyang Zhang

    (Chinese PLA General Hospital)

  • Jiaxin Wang

    (State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University
    Beijing Normal University
    Beijing Normal University)

  • Zizhou Li

    (State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University
    Beijing Normal University
    Beijing Normal University)

  • Jiaxin Yang

    (State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University
    Beijing Normal University
    Beijing Normal University)

  • Chunlei Han

    (Capital Medical University)

  • Yuan Gao

    (Capital Medical University)

  • Xinguang Yu

    (Chinese PLA General Hospital)

  • Shihui Han

    (Peking University)

  • Fangang Meng

    (Capital Medical University
    Chinese Institute for Brain Research)

  • Yina Ma

    (State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University
    Beijing Normal University
    Beijing Normal University
    Chinese Institute for Brain Research)

Abstract

Empathy enables understanding and sharing of others’ feelings. Human neuroimaging studies have identified critical brain regions supporting empathy for pain, including the anterior insula (AI), anterior cingulate (ACC), amygdala, and inferior frontal gyrus (IFG). However, to date, the precise spatio-temporal profiles of empathic neural responses and inter-regional communications remain elusive. Here, using intracranial electroencephalography, we investigated electrophysiological signatures of vicarious pain perception. Others’ pain perception induced early increases in high-gamma activity in IFG, beta power increases in ACC, but decreased beta power in AI and amygdala. Vicarious pain perception also altered the beta-band-coordinated coupling between ACC, AI, and amygdala, as well as increased modulation of IFG high-gamma amplitudes by beta phases of amygdala/AI/ACC. We identified a necessary combination of neural features for decoding vicarious pain perception. These spatio-temporally specific regional activities and inter-regional interactions within the empathy network suggest a neurodynamic model of human pain empathy.

Suggested Citation

  • Huixin Tan & Xiaoyu Zeng & Jun Ni & Kun Liang & Cuiping Xu & Yanyang Zhang & Jiaxin Wang & Zizhou Li & Jiaxin Yang & Chunlei Han & Yuan Gao & Xinguang Yu & Shihui Han & Fangang Meng & Yina Ma, 2024. "Intracranial EEG signals disentangle multi-areal neural dynamics of vicarious pain perception," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49541-1
    DOI: 10.1038/s41467-024-49541-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49541-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49541-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthias Stangl & Uros Topalovic & Cory S. Inman & Sonja Hiller & Diane Villaroman & Zahra M. Aghajan & Leonardo Christov-Moore & Nicholas R. Hasulak & Vikram R. Rao & Casey H. Halpern & Dawn Eliashiv, 2021. "Boundary-anchored neural mechanisms of location-encoding for self and others," Nature, Nature, vol. 589(7842), pages 420-425, January.
    2. D. Pacheco Estefan & M. Sánchez-Fibla & A. Duff & A. Principe & R. Rocamora & H. Zhang & N. Axmacher & P. F. M. J. Verschure, 2019. "Coordinated representational reinstatement in the human hippocampus and lateral temporal cortex during episodic memory retrieval," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Chujun Lin & Umit Keles & Ralph Adolphs, 2021. "Four dimensions characterize attributions from faces using a representative set of English trait words," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Jie Zheng & Kristopher L. Anderson & Stephanie L. Leal & Avgusta Shestyuk & Gultekin Gulsen & Lilit Mnatsakanyan & Sumeet Vadera & Frank P. K. Hsu & Michael A. Yassa & Robert T. Knight & Jack J. Lin, 2017. "Amygdala-hippocampal dynamics during salient information processing," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    6. Aaron Kucyi & Amy Daitch & Omri Raccah & Baotian Zhao & Chao Zhang & Michael Esterman & Michael Zeineh & Casey H. Halpern & Kai Zhang & Jianguo Zhang & Josef Parvizi, 2020. "Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    7. Timothée Proix & Jaime Delgado Saa & Andy Christen & Stephanie Martin & Brian N. Pasley & Robert T. Knight & Xing Tian & David Poeppel & Werner K. Doyle & Orrin Devinsky & Luc H. Arnal & Pierre Mégeva, 2022. "Imagined speech can be decoded from low- and cross-frequency intracranial EEG features," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay L. Gill & Julia A. Schneiders & Matthias Stangl & Zahra M. Aghajan & Mauricio Vallejo & Sonja Hiller & Uros Topalovic & Cory S. Inman & Diane Villaroman & Ausaf Bari & Avishek Adhikari & Vikram R., 2023. "A pilot study of closed-loop neuromodulation for treatment-resistant post-traumatic stress disorder," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jin Li & Dan Cao & Shan Yu & Xinyu Xiao & Lukas Imbach & Lennart Stieglitz & Johannes Sarnthein & Tianzi Jiang, 2023. "Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Thomas Schreiner & Benjamin J. Griffiths & Merve Kutlu & Christian Vollmar & Elisabeth Kaufmann & Stefanie Quach & Jan Remi & Soheyl Noachtar & Tobias Staudigl, 2024. "Spindle-locked ripples mediate memory reactivation during human NREM sleep," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Luca D. Kolibius & Frederic Roux & George Parish & Marije Wal & Mircea Plas & Ramesh Chelvarajah & Vijay Sawlani & David T. Rollings & Johannes D. Lang & Stephanie Gollwitzer & Katrin Walther & Rüdige, 2023. "Hippocampal neurons code individual episodic memories in humans," Nature Human Behaviour, Nature, vol. 7(11), pages 1968-1979, November.
    8. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Manuela Costa & Diego Lozano-Soldevilla & Antonio Gil-Nagel & Rafael Toledano & Carina R. Oehrn & Lukas Kunz & Mar Yebra & Costantino Mendez-Bertolo & Lennart Stieglitz & Johannes Sarnthein & Nikolai , 2022. "Aversive memory formation in humans involves an amygdala-hippocampus phase code," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Sean L. Metzger & Jessie R. Liu & David A. Moses & Maximilian E. Dougherty & Margaret P. Seaton & Kaylo T. Littlejohn & Josh Chartier & Gopala K. Anumanchipalli & Adelyn Tu-Chan & Karunesh Ganguly & E, 2022. "Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Macauley Smith Breault & Pierre Sacré & Zachary B. Fitzgerald & John T. Gale & Kathleen E. Cullen & Jorge A. González-Martínez & Sridevi V. Sarma, 2023. "Internal states as a source of subject-dependent movement variability are represented by large-scale brain networks," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Taemin Kim & Yejee Shin & Kyowon Kang & Kiho Kim & Gwanho Kim & Yunsu Byeon & Hwayeon Kim & Yuyan Gao & Jeong Ryong Lee & Geonhui Son & Taeseong Kim & Yohan Jun & Jihyun Kim & Jinyoung Lee & Seyun Um , 2022. "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Sandra Gattas & Myra Sarai Larson & Lilit Mnatsakanyan & Indranil Sen-Gupta & Sumeet Vadera & A. Lee Swindlehurst & Paul E. Rapp & Jack J. Lin & Michael A. Yassa, 2023. "Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Laurenz Muessig & Fabio Ribeiro Rodrigues & Tale L. Bjerknes & Benjamin W. Towse & Caswell Barry & Neil Burgess & Edvard I. Moser & May-Britt Moser & Francesca Cacucci & Thomas J. Wills, 2024. "Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Sarah K. Wandelt & David A. Bjånes & Kelsie Pejsa & Brian Lee & Charles Liu & Richard A. Andersen, 2024. "Representation of internal speech by single neurons in human supramarginal gyrus," Nature Human Behaviour, Nature, vol. 8(6), pages 1136-1149, June.
    16. Haoxin Zhang & Ivan Skelin & Shiting Ma & Michelle Paff & Lilit Mnatsakanyan & Michael A. Yassa & Robert T. Knight & Jack J. Lin, 2024. "Awake ripples enhance emotional memory encoding in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49541-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.