IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09569-0.html
   My bibliography  Save this article

Coordinated representational reinstatement in the human hippocampus and lateral temporal cortex during episodic memory retrieval

Author

Listed:
  • D. Pacheco Estefan

    (Institute for Bioengineering of Catalonia (IBEC)
    Universitat Pompeu Fabra)

  • M. Sánchez-Fibla

    (Universitat Pompeu Fabra)

  • A. Duff

    (Institute for Bioengineering of Catalonia (IBEC))

  • A. Principe

    (Hospital del Mar
    Hospital del Mar Medical Research Institute)

  • R. Rocamora

    (Hospital del Mar
    Hospital del Mar Medical Research Institute
    Universitat Pompeu Fabra)

  • H. Zhang

    (Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum)

  • N. Axmacher

    (Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum)

  • P. F. M. J. Verschure

    (Institute for Bioengineering of Catalonia (IBEC)
    The Barcelona Institute of Science and Technology (BIST)
    Passeig de Lluís Companys, 23)

Abstract

Theoretical models of episodic memory have proposed that retrieval depends on interactions between the hippocampus and neocortex, where hippocampal reinstatement of item-context associations drives neocortical reinstatement of item information. Here, we simultaneously recorded intracranial EEG from hippocampus and lateral temporal cortex (LTC) of epilepsy patients who performed a virtual reality spatial navigation task. We extracted stimulus-specific representations of both item and item-context associations from the time-frequency patterns of activity in hippocampus and LTC. Our results revealed a double dissociation of representational reinstatement across time and space: an early reinstatement of item-context associations in hippocampus preceded a later reinstatement of item information in LTC. Importantly, reinstatement levels in hippocampus and LTC were correlated across trials, and the quality of LTC reinstatement was predicted by the magnitude of phase synchronization between hippocampus and LTC. These findings confirm that episodic memory retrieval in humans relies on coordinated representational interactions within a hippocampal-neocortical network.

Suggested Citation

  • D. Pacheco Estefan & M. Sánchez-Fibla & A. Duff & A. Principe & R. Rocamora & H. Zhang & N. Axmacher & P. F. M. J. Verschure, 2019. "Coordinated representational reinstatement in the human hippocampus and lateral temporal cortex during episodic memory retrieval," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09569-0
    DOI: 10.1038/s41467-019-09569-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09569-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09569-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Luca D. Kolibius & Frederic Roux & George Parish & Marije Wal & Mircea Plas & Ramesh Chelvarajah & Vijay Sawlani & David T. Rollings & Johannes D. Lang & Stephanie Gollwitzer & Katrin Walther & Rüdige, 2023. "Hippocampal neurons code individual episodic memories in humans," Nature Human Behaviour, Nature, vol. 7(11), pages 1968-1979, November.
    3. Sandra Gattas & Myra Sarai Larson & Lilit Mnatsakanyan & Indranil Sen-Gupta & Sumeet Vadera & A. Lee Swindlehurst & Paul E. Rapp & Jack J. Lin & Michael A. Yassa, 2023. "Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Haoxin Zhang & Ivan Skelin & Shiting Ma & Michelle Paff & Lilit Mnatsakanyan & Michael A. Yassa & Robert T. Knight & Jack J. Lin, 2024. "Awake ripples enhance emotional memory encoding in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Jin Li & Dan Cao & Shan Yu & Xinyu Xiao & Lukas Imbach & Lennart Stieglitz & Johannes Sarnthein & Tianzi Jiang, 2023. "Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09569-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.